73 research outputs found

    Development and tests of a new prototype detector for the XAFS beamline at Elettra Synchrotron in Trieste

    Get PDF
    The XAFS beamline at Elettra Synchrotron in Trieste combines X-ray absorption spectroscopy and X-ray diffraction to provide chemically specific structural information of materials. It operates in the energy range 2.4-27 keV by using a silicon double reflection Bragg monochromator. The fluorescence measurement is performed in place of the absorption spectroscopy when the sample transparency is too low for transmission measurements or the element to study is too diluted in the sample. We report on the development and on the preliminary tests of a new prototype detector based on Silicon Drift Detectors technology and the SIRIO ultra low noise front-end ASIC. The new system will be able to reduce drastically the time needed to perform fluorescence measurements, while keeping a short dead time and maintaining an adequate energy resolution to perform spectroscopy. The custom-made silicon sensor and the electronics are designed specifically for the beamline requirements.Comment: Proceeding of the 6YRM 12th-14th Oct 2015 - L'Aquila (Italy). Accepted for publication on Journal of Physics: Conference Serie

    First results of a novel Silicon Drift Detector array designed for low energy X-ray fluorescence spectroscopy

    Get PDF
    We developed a trapezoidal shaped matrix with 8 cells of Silicon Drift Detectors (SDD) featuring a very low leakage current (below 180 pA/cm2 at 20 \ub0C) and a shallow uniformly implanted p+ entrance window that enables sensitivity down to few hundreds of eV. The matrix consists of a completely depleted volume of silicon wafer subdivided into 4 square cells and 4 half-size triangular cells. The energy resolution of a single square cell, readout by the ultra-low noise SIRIO charge sensitive preamplifier, is 158 eV FWHM at 5.9 keV and 0 \ub0C. The total sensitive area of the matrix is 231 mm2 and the wafer thickness is 450\u3bcm. The detector was developed in the frame of the INFN R&D project ReDSoX in collaboration with FBK, Trento. Its trapezoidal shape was chosen in order to optimize the detection geometry for the experimental requirements of low energy X-ray fluorescence (LEXRF) spectroscopy, aiming at achieving a large detection angle. We plan to exploit the complete detector at the TwinMic spectromicroscopy beamline at the Elettra Synchrotron (Trieste, Italy). The complete system, composed of 4 matrices, increases the solid angle coverage of the isotropic photoemission hemisphere about 4 times over the present detector configuration. We report on the layout of the SDD matrix and of the experimental set-up, as well as the spectroscopic performance measured both in the laboratory and at the experimental beamline. \ua9 2015 Elsevier B.V

    Measured and projected beam backgrounds in the Belle II experiment at the SuperKEKB collider

    Get PDF
    The Belle II experiment at the SuperKEKB electron-positron collider aims to collect an unprecedented data set of 50 ab−150~{\rm ab}^{-1} to study CPCP-violation in the BB-meson system and to search for Physics beyond the Standard Model. SuperKEKB is already the world's highest-luminosity collider. In order to collect the planned data set within approximately one decade, the target is to reach a peak luminosity of 6×1035 cm−2s−1\rm 6 \times 10^{35}~cm^{-2}s^{-1} by further increasing the beam currents and reducing the beam size at the interaction point by squeezing the betatron function down to βy∗=0.3 mm\beta^{*}_{\rm y}=\rm 0.3~mm. To ensure detector longevity and maintain good reconstruction performance, beam backgrounds must remain well controlled. We report on current background rates in Belle II and compare these against simulation. We find that a number of recent refinements have significantly improved the background simulation accuracy. Finally, we estimate the safety margins going forward. We predict that backgrounds should remain high but acceptable until a luminosity of at least 2.8×1035 cm−2s−1\rm 2.8 \times 10^{35}~cm^{-2}s^{-1} is reached for βy∗=0.6 mm\beta^{*}_{\rm y}=\rm 0.6~mm. At this point, the most vulnerable Belle II detectors, the Time-of-Propagation (TOP) particle identification system and the Central Drift Chamber (CDC), have predicted background hit rates from single-beam and luminosity backgrounds that add up to approximately half of the maximum acceptable rates.Comment: 28 pages, 17 figures, 9 tables (revised

    Tunability experiments at the FERMI@Elettra free-electron laser

    Get PDF
    FERMI@Elettra is a free electron-laser (FEL)-based user facility that, after two years of commissioning, started preliminary users' dedicated runs in 2011. At variance with other FEL user facilities, FERMI@Elettra has been designed to deliver improved spectral stability and longitudinal coherence. The adopted scheme, which uses an external laser to initiate the FEL process, has been demonstrated to be capable of generating FEL pulses close to the Fourier transform limit. We report on the first instance of FEL wavelength tuning, both in a narrow and in a large spectral range (fine- and coarse-tuning). We also report on two different experiments that have been performed exploiting such FEL tuning. We used fine-tuning to scan across the 1s–4p resonance in He atoms, at ≈23.74 eV (52.2 nm), detecting both UV–visible fluorescence (4p–2s, 400 nm) and EUV fluorescence (4p–1s, 52.2 nm). We used coarse-tuning to scan the M4,5 absorption edge of Ge (∼29.5 eV) in the wavelength region 30–60 nm, measured in transmission geometry with a thermopile positioned on the rear side of a Ge thin foil

    Bunch by Bunch X-Ray Beam Position and Intensity Monitoring Using a Single Crystal Diamond Detector

    No full text
    Diamond is an outstanding material for the production of semitransparent in situ photon beam monitors which can withstand the high dose rates occurring in new generation synchrotron radiation storage rings and in free electron lasers. Here we report on the development of a 500 um thick freestanding, single-crystal chemical vapor deposited diamond detector with segmented electrodes; it exhibits a high resistivity of some 10^15 ohm cm which allows charge integration operations. Using the latter at a frame rate of 8.33 kHz in combination with a needle synchrotron radiation beam and mesh scans, the inhomogeneity of the sensor was found to be of the order of 2%. With a measured electronics noise of 2 pA / Hz^(1/2) a 0.05% relative precision in the intensity measurements (at 1 uA) and a 0.1 um resolution in the position encoding have been estimated. Moreover, the high electron\u2013hole mobility of diamond compared with other active materials enables very fast charge collection. This allowed us to utilize single pulse integration to simultaneously detect the intensity and the position of each synchrotron radiation photon bunch generated by a bending magnet

    The new FAST module: A portable and transparent add-on module for time-resolved investigations with commercial scanning probe microscopes

    Get PDF
    Time resolution is one of the most severe limitations of scanning probe microscopies (SPMs), since the typical image acquisition times are in the order of several seconds or even few minutes. As a consequence, the characterization of dynamical processes occurring at surfaces (e.g. surface diffusion, film growth, self-assembly and chemical reactions) cannot be thoroughly addressed by conventional SPMs. To overcome this limitation, several years ago we developed a first prototype of the FAST module, an add-on instrument capable of driving a commercial scanning tunneling microscope (STM) at and beyond video rate frequencies. Here we report on a fully redesigned version of the FAST module, featuring improved performance and user experience, which can be used both with STMs and atomic force microscopes (AFMs), and offers additional capabilities such as an atom tracking mode. All the new features of the FAST module, including portability between different commercial instruments, are described in detail and practically demonstrated
    • …
    corecore