76 research outputs found
Development and tests of a new prototype detector for the XAFS beamline at Elettra Synchrotron in Trieste
The XAFS beamline at Elettra Synchrotron in Trieste combines X-ray absorption
spectroscopy and X-ray diffraction to provide chemically specific structural
information of materials. It operates in the energy range 2.4-27 keV by using a
silicon double reflection Bragg monochromator. The fluorescence measurement is
performed in place of the absorption spectroscopy when the sample transparency
is too low for transmission measurements or the element to study is too diluted
in the sample. We report on the development and on the preliminary tests of a
new prototype detector based on Silicon Drift Detectors technology and the
SIRIO ultra low noise front-end ASIC. The new system will be able to reduce
drastically the time needed to perform fluorescence measurements, while keeping
a short dead time and maintaining an adequate energy resolution to perform
spectroscopy. The custom-made silicon sensor and the electronics are designed
specifically for the beamline requirements.Comment: Proceeding of the 6YRM 12th-14th Oct 2015 - L'Aquila (Italy).
Accepted for publication on Journal of Physics: Conference Serie
The new FAST module: A portable and transparent add-on module for time-resolved investigations with commercial scanning probe microscopes
peer reviewedTime resolution is one of the most severe limitations of scanning probe microscopies (SPMs), since the typical image acquisition times are in the order of several seconds or even few minutes. As a consequence, the characterization of dynamical processes occurring at surfaces (e.g. surface diffusion, film growth, self-assembly and chemical reactions) cannot be thoroughly addressed by conventional SPMs. To overcome this limitation, several years ago we developed a first prototype of the FAST module, an add-on instrument capable of driving a commercial scanning tunneling microscope (STM) at and beyond video rate frequencies. Here we report on a fully redesigned version of the FAST module, featuring improved performance and user experience, which can be used both with STMs and atomic force microscopes (AFMs), and offers additional capabilities such as an atom tracking mode. All the new features of the FAST module, including portability between different commercial instruments, are described in detail and practically demonstrated
First results of a novel Silicon Drift Detector array designed for low energy X-ray fluorescence spectroscopy
We developed a trapezoidal shaped matrix with 8 cells of Silicon Drift Detectors (SDD) featuring a very low leakage current (below 180 pA/cm2 at 20 \ub0C) and a shallow uniformly implanted p+ entrance window that enables sensitivity down to few hundreds of eV. The matrix consists of a completely depleted volume of silicon wafer subdivided into 4 square cells and 4 half-size triangular cells. The energy resolution of a single square cell, readout by the ultra-low noise SIRIO charge sensitive preamplifier, is 158 eV FWHM at 5.9 keV and 0 \ub0C. The total sensitive area of the matrix is 231 mm2 and the wafer thickness is 450\u3bcm. The detector was developed in the frame of the INFN R&D project ReDSoX in collaboration with FBK, Trento. Its trapezoidal shape was chosen in order to optimize the detection geometry for the experimental requirements of low energy X-ray fluorescence (LEXRF) spectroscopy, aiming at achieving a large detection angle. We plan to exploit the complete detector at the TwinMic spectromicroscopy beamline at the Elettra Synchrotron (Trieste, Italy). The complete system, composed of 4 matrices, increases the solid angle coverage of the isotropic photoemission hemisphere about 4 times over the present detector configuration. We report on the layout of the SDD matrix and of the experimental set-up, as well as the spectroscopic performance measured both in the laboratory and at the experimental beamline. \ua9 2015 Elsevier B.V
Measured and projected beam backgrounds in the Belle II experiment at the SuperKEKB collider
The Belle II experiment at the SuperKEKB electron-positron collider aims to
collect an unprecedented data set of to study -violation
in the -meson system and to search for Physics beyond the Standard Model.
SuperKEKB is already the world's highest-luminosity collider. In order to
collect the planned data set within approximately one decade, the target is to
reach a peak luminosity of by further
increasing the beam currents and reducing the beam size at the interaction
point by squeezing the betatron function down to . To ensure detector longevity and maintain good reconstruction
performance, beam backgrounds must remain well controlled. We report on current
background rates in Belle II and compare these against simulation. We find that
a number of recent refinements have significantly improved the background
simulation accuracy. Finally, we estimate the safety margins going forward. We
predict that backgrounds should remain high but acceptable until a luminosity
of at least is reached for
. At this point, the most vulnerable Belle II
detectors, the Time-of-Propagation (TOP) particle identification system and the
Central Drift Chamber (CDC), have predicted background hit rates from
single-beam and luminosity backgrounds that add up to approximately half of the
maximum acceptable rates.Comment: 28 pages, 17 figures, 9 tables (revised
Tunability experiments at the FERMI@Elettra free-electron laser
FERMI@Elettra is a free electron-laser (FEL)-based user facility that, after two years of commissioning, started preliminary users' dedicated runs in 2011. At variance with other FEL user facilities, FERMI@Elettra has been designed to deliver improved spectral stability and longitudinal coherence. The adopted scheme, which uses an external laser to initiate the FEL process, has been demonstrated to be capable of generating FEL pulses close to the Fourier transform limit. We report on the first instance of FEL wavelength tuning, both in a narrow and in a large spectral range (fine- and coarse-tuning). We also report on two different experiments that have been performed exploiting such FEL tuning. We used fine-tuning to scan across the 1sâ4p resonance in He atoms, at â23.74 eV (52.2 nm), detecting both UVâvisible fluorescence (4pâ2s, 400 nm) and EUV fluorescence (4pâ1s, 52.2 nm). We used coarse-tuning to scan the M4,5 absorption edge of Ge (âŒ29.5 eV) in the wavelength region 30â60 nm, measured in transmission geometry with a thermopile positioned on the rear side of a Ge thin foil
Bunch by Bunch X-Ray Beam Position and Intensity Monitoring Using a Single Crystal Diamond Detector
Diamond is an outstanding material for the production of semitransparent in situ photon beam monitors which can withstand the high dose rates occurring in new generation synchrotron radiation storage rings and in free electron lasers. Here we report on the development of a 500 um thick freestanding, single-crystal chemical vapor deposited diamond detector with segmented electrodes; it exhibits a high resistivity of some 10^15 ohm cm which allows charge integration operations. Using the latter at a frame rate of 8.33 kHz in combination with a needle synchrotron radiation beam and mesh scans, the inhomogeneity of the sensor was found to be of the order of 2%. With a measured electronics noise of 2 pA / Hz^(1/2) a 0.05% relative precision in the intensity measurements (at 1 uA) and a 0.1 um resolution in the position encoding have been estimated. Moreover, the high electron\u2013hole mobility of diamond compared with other active materials enables very fast charge collection. This allowed us to utilize single pulse integration to simultaneously detect the intensity and the position of each synchrotron radiation photon bunch generated by a bending magnet
- âŠ