1,557 research outputs found

    Regulation mechanisms in spatial stochastic development models

    Full text link
    The aim of this paper is to analyze different regulation mechanisms in spatial continuous stochastic development models. We describe the density behavior for models with global mortality and local establishment rates. We prove that the local self-regulation via a competition mechanism (density dependent mortality) may suppress a unbounded growth of the averaged density if the competition kernel is superstable.Comment: 19 page

    Vlasov scaling for stochastic dynamics of continuous systems

    Full text link
    We describe a general scheme of derivation of the Vlasov-type equations for Markov evolutions of particle systems in continuum. This scheme is based on a proper scaling of corresponding Markov generators and has an algorithmic realization in terms of related hierarchical chains of correlation functions equations. Several examples of the realization of the proposed approach in particular models are presented.Comment: 23 page

    Acid and Acid-Alkali Treatment Methods of Al-Chloride Solution Obtained by the Leaching of Coal Fly Ash to Produce Sandy Grade Alumina

    Get PDF
    Sandy grade alumina is a valuable intermediate material that is mainly produced by the Bayer process and used for manufacturing primary metallic aluminum. Coal fly ash is generated in coal-fired power plants as a by-product of coal combustion that consists of submicron ash particles and is considered to be a potentially hazardous technogenic waste. The present paper demonstrates that the Al-chloride solution obtained by leaching coal fly ash can be further processed to obtain sandy grade alumina, which is essentially suitable for metallic aluminum production. The novel process developed in the present study involves the production of amorphous alumina via the calcination of aluminium chloride hexahydrate obtained by salting-out from acid Al-Cl liquor. Following this, alkaline treatment with further Al2 O3 dissolution and recrystallization as Al(OH)3 particles is applied, and a final calcination step is employed to obtain sandy grade alumina with minimum impurities. The process does not require high-pressure equipment and reutilizes the alkaline liquor and gibbsite particles from the Bayer process, which allows the sandy grade alumina production costs to be to significantly reduced. The present article also discusses the main technological parameters of the acid treatment and the amounts of major impurities in the sandy grade alumina obtained by the different (acid and acid-alkali) methods. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.Russian Science Foundation, RSF: 18-79-00305Funding: This work was financially supported by the Russian Science Foundation Project No. 18-79-00305

    Temporal solitons in optical microresonators

    Full text link
    Dissipative solitons can emerge in a wide variety of dissipative nonlinear systems throughout the fields of optics, medicine or biology. Dissipative solitons can also exist in Kerr-nonlinear optical resonators and rely on the double balance between parametric gain and resonator loss on the one hand and nonlinearity and diffraction or dispersion on the other hand. Mathematically these solitons are solution to the Lugiato-Lefever equation and exist on top of a continuous wave (cw) background. Here we report the observation of temporal dissipative solitons in a high-Q optical microresonator. The solitons are spontaneously generated when the pump laser is tuned through the effective zero detuning point of a high-Q resonance, leading to an effective red-detuned pumping. Red-detuned pumping marks a fundamentally new operating regime in nonlinear microresonators. While usually unstablethis regime acquires unique stability in the presence of solitons without any active feedback on the system. The number of solitons in the resonator can be controlled via the pump laser detuning and transitions to and between soliton states are associated with discontinuous steps in the resonator transmission. Beyond enabling to study soliton physics such as soliton crystals our observations open the route towards compact, high repetition-rate femto-second sources, where the operating wavelength is not bound to the availability of broadband laser gain media. The single soliton states correspond in the frequency domain to low-noise optical frequency combs with smooth spectral envelopes, critical to applications in broadband spectroscopy, telecommunications, astronomy and low phase-noise microwave generation.Comment: Includes Supplementary Informatio

    Using dashboards for the business processes status analysis

    Get PDF
    This paper describes business process status analysis using the dashboards. The dashboards are considered as those, which belong to the most preferred Business Intelligence tools nowadays, which are used by both higher managers and ordinary employees. Existing software tools for dashboard design were reviewed, as well as the most popular visualization charts were outlined. The place and role of analytical dashboards as part of business process management is described

    Pulsar Science with the Green Bank 43m Telescope

    Full text link
    The 43m telescope at the NRAO site in Green Bank, WV has recently been outfitted with a clone of the Green Bank Ultimate Pulsar Processing Instrument (GUPPI \cite{Ransom:2009}) backend, making it very useful for a number of pulsar related studies in frequency ranges 800-1600 MHz and 220-440 MHz. Some of the recent science being done with it include: monitoring of the Crab pulsar, a blind search for transient sources, pulsar searches of targets of opportunity, and an all-sky mapping project. For the Crab monitoring project, regular observations are searched for giant pulses (GPs), which are then correlated with γ\gamma-ray photons from the \emph{Fermi} spacecraft. Data from the all-sky mapping project are first run through a pipeline that does a blind transient search, looking for single pulses over a DM range of 0-500 pc~cm3^{-3}. These projects are made possible by MIT Lincoln Labs.Comment: 2 pages, 1 figure, to appear in AIP Conference Proceedings of Pulsar Conference 2010 "Radio Pulsars: a key to unlock the secrets of the Universe", Sardinia, October 201

    A Search for Pulsed and Bursty Radio Emission from X-ray Dim Isolated Neutron Stars

    Full text link
    We have carried out a search for radio emission from six X-ray dim isolated neutron stars (XDINSs) observed with the Robert C. Byrd Green Bank Radio Telescope (GBT) at 820 MHz. No bursty or pulsed radio emission was found down to a 4sigma significance level. The corresponding flux limit is 0.01-0.04 mJy depending on the integration time for the particular source and pulse duty cycle of 2%. These are the most sensitive limits yet on radio emission from these objects.Comment: 3 pages, 3 figures, to be appeared in the Proceedings of the conference "40 Years of Pulsars: Millisecond Pulsars, Magnetars, and More" held on August 12-17, 2007, McGill University, Montreal, Canad

    Asymptotic behavior of Structures made of Plates

    Full text link
    The aim of this work is to study the asymptotic behavior of a structure made of plates of thickness 2δ2\delta when δ0\delta\to 0. This study is carried on within the frame of linear elasticity by using the unfolding method. It is based on several decompositions of the structure displacements and on the passing to the limit in fixed domains. We begin with studying the displacements of a plate. We show that any displacement is the sum of an elementary displacement concerning the normal lines on the middle surface of the plate and a residual displacement linked to these normal lines deformations. An elementary displacement is linear with respect to the variable xx3. It is written U(x)+R(x)x3e3U(^x)+R(^x)\land x3e3 where U is a displacement of the mid-surface of the plate. We show a priori estimates and convergence results when δ0\delta \to 0. We characterize the limits of the unfolded displacements of a plate as well as the limits of the unfolded of the strained tensor. Then we extend these results to the structures made of plates. We show that any displacement of a structure is the sum of an elementary displacement of each plate and of a residual displacement. The elementary displacements of the structure (e.d.p.s.) coincide with elementary rods displacements in the junctions. Any e.d.p.s. is given by two functions belonging to H1(S;R3)H1(S;R3) where S is the skeleton of the structure (the plates mid-surfaces set). One of these functions : U is the skeleton displacement. We show that U is the sum of an extensional displacement and of an inextensional one. The first one characterizes the membrane displacements and the second one is a rigid displacement in the direction of the plates and it characterizes the plates flexion. Eventually we pass to the limit as δ0\delta \to 0 in the linearized elasticity system, on the one hand we obtain a variational problem that is satisfied by the limit extensional displacement, and on the other hand, a variational problem satisfied by the limit of inextensional displacements
    corecore