15 research outputs found

    Rare Earthā€Doped Anatase TiO2 Nanoparticles

    Get PDF
    Titanium dioxide is a wide bandā€gap semiconductor of high chemical stability, nontoxicity and large refractive index. Because of the high photocatalytic activity, anatase is a preferred TiO2 form in many applications such as for air and water splitting and purification. Doping of TiO2 with various ions can increase the photocatalytic activity by enhancing light absorption in visible region and can alter structure, surface area and morphology. Also, by doping TiO2 with optically active ions, visible light via upā€ or downconversion luminescence can be produced. It is a challenge to optimize the synthesis procedure to incorporate rare earth RE3+ ions into the TiO2 structure due to large mismatch in ionic radii between the Ti4+ and RE3+ and because of the charge imbalance. Visible (VIS) and ultraviolet (UV) luminescence of several RE3+ ions can be obtained when incorporated into anatase TiO2, also affecting microstructural characteristics of TiO2. It is of great importance to summarize publications on rare earthā€doped anatase TiO2 nanoparticles to find correct TiO2-RE combination to sensitize trivalent rare earths luminescence, as well as to predict or tune structural and morphological properties. A better understanding on these topics may progress the desired design of this kind of material towards specific applications

    Prediction of pest insect appearance using sensors and machine learning

    No full text
    The appearance of pest insects can lead to a loss in yield if farmers do not respond in a timely manner to suppress their spread. Occurrences and numbers of insects can be monitored through insect traps, which include their permanent touring and checking of their condition. Another more efficient way is to set up sensor devices with a camera at the traps that will photograph the traps and forward the images to the Internet, where the pest insectā€™s appearance will be predicted by image analysis. Weather conditions, temperature and relative humidity are the parameters that affect the appearance of some pests, such as Helicoverpa armigera. This paper presents a model of machine learning that can predict the appearance of insects during a season on a daily basis, taking into account the air temperature and relative humidity. Several machine learning algorithms for classification were applied and their accuracy for the prediction of insect occurrence was presented (up to 76.5%). Since the data used for testing were given in chronological order according to the days when the measurement was performed, the existing model was expanded to take into account the periods of three and five days. The extended method showed better accuracy of prediction and a lower percentage of false detections. In the case of a period of five days, the accuracy of the affected detections was 86.3%, while the percentage of false detections was 11%. The proposed model of machine learning can help farmers to detect the occurrence of pests and save the time and resources needed to check the fields

    Making Nd3+ a sensitive luminescent thermometer for physiological temperaturesā€”an account of pitfalls in boltzmann thermometry

    Get PDF
    Ratiometric luminescence thermometry employing luminescence within the biological transparency windows provides high potential for biothermal imaging. Nd3+ is a promising candidate for that purpose due to its intense radiative transitions within biological windows (BWs) I and II and the simultaneous efficient excitability within BW I. This makes Nd3+ almost unique among all lanthanides. Typically, emission from the two4F3/2 crystal field levels is used for thermometry but the small ~100 cmāˆ’1 energy separation limits the sensitivity. A higher sensitivity for physiological temperatures is possible using the luminescence intensity ratio (LIR) of the emissive transitions from the4F5/2 and4F3/2 excited spin-orbit levels. Herein, we demonstrate and discuss various pitfalls that can occur in Boltzmann thermometry if this particular LIR is used for physiological temperature sensing. Both microcrystalline, dilute (0.1%) Nd3+-doped LaPO4 and LaPO4: x% Nd3+ (x = 2, 5, 10, 25, 100) nanocrystals serve as an illustrative example. Besides structural and optical characterization of those luminescent thermometers, the impact and consequences of the Nd3+ concentration on their luminescence and performance as Boltzmann-based thermometers are analyzed. For low Nd3+ concentrations, Boltzmann equilibrium starts just around 300 K. At higher Nd3+ concentrations, cross-relaxation processes enhance the decay rates of the4F3/2 and4F5/2 levels making the decay faster than the equilibration rates between the levels. It is shown that the onset of the useful temperature sensing range shifts to higher temperatures, even above ~ 450 K for Nd concentrations over 5%. A microscopic explanation for pitfalls in Boltzmann thermometry with Nd3+ is finally given and guidelines for the usability of this lanthanide ion in the field of physiological temperature sensing are elaborated. Insight in competition between thermal coupling through non-radiative transitions and population decay through cross-relaxation of the4F5/2 and4F3/2 spin-orbit levels of Nd3+ makes it possible to tailor the thermometric performance of Nd3+ to enable physiological temperature sensing

    Repair of Bone Tissue Affected by Osteoporosis with Hydroxyapatite-Poly-L-lactide (HAp-PLLA) with and Without Blood Plasma

    No full text
    The aim of this study is to examine the reparatory ability of the synthetic biomaterial hydroxyapatite-poly-L-lactide (HAp-PLLA), the replacement of alveolar ridge, and rehabilitation of bone defects caused by osteoporosis, in an experimental group of animals. The experiments are performed on syngeneic Sprague Dawley rats. Osteoporosis is induced by glucocorticoids in rats during a 12-week period. After this, the experimental group of animals is divided into five subgroups. An artificial defect is made in the alveolar bone on the left side of the mandible. In one group of animals, the defect is left to heal by itself, while in other groups, pure HAp-PLLA or one mixed with plasma is implanted. The best results are achieved by the implantation of the HAp-PLLA composite biomaterial mixed with autologous plasma. Formation of a new mandibular bone is seen, growing intensely, leading to rapid osteogenesis

    Making Nd3+ a sensitive luminescent thermometer for physiological temperaturesā€”an account of pitfalls in boltzmann thermometry

    Get PDF
    Ratiometric luminescence thermometry employing luminescence within the biological transparency windows provides high potential for biothermal imaging. Nd3+ is a promising candidate for that purpose due to its intense radiative transitions within biological windows (BWs) I and II and the simultaneous efficient excitability within BW I. This makes Nd3+ almost unique among all lanthanides. Typically, emission from the two4F3/2 crystal field levels is used for thermometry but the small ~100 cmāˆ’1 energy separation limits the sensitivity. A higher sensitivity for physiological temperatures is possible using the luminescence intensity ratio (LIR) of the emissive transitions from the4F5/2 and4F3/2 excited spin-orbit levels. Herein, we demonstrate and discuss various pitfalls that can occur in Boltzmann thermometry if this particular LIR is used for physiological temperature sensing. Both microcrystalline, dilute (0.1%) Nd3+-doped LaPO4 and LaPO4: x% Nd3+ (x = 2, 5, 10, 25, 100) nanocrystals serve as an illustrative example. Besides structural and optical characterization of those luminescent thermometers, the impact and consequences of the Nd3+ concentration on their luminescence and performance as Boltzmann-based thermometers are analyzed. For low Nd3+ concentrations, Boltzmann equilibrium starts just around 300 K. At higher Nd3+ concentrations, cross-relaxation processes enhance the decay rates of the4F3/2 and4F5/2 levels making the decay faster than the equilibration rates between the levels. It is shown that the onset of the useful temperature sensing range shifts to higher temperatures, even above ~ 450 K for Nd concentrations over 5%. A microscopic explanation for pitfalls in Boltzmann thermometry with Nd3+ is finally given and guidelines for the usability of this lanthanide ion in the field of physiological temperature sensing are elaborated. Insight in competition between thermal coupling through non-radiative transitions and population decay through cross-relaxation of the4F5/2 and4F3/2 spin-orbit levels of Nd3+ makes it possible to tailor the thermometric performance of Nd3+ to enable physiological temperature sensing

    Entanglement transport and a nanophotonic interface for atoms in optical tweezers

    No full text
    Quantum trapping and shuffling Programmable arrays of atoms or ions trapped in optical potentials have recently emerged as a leading platform for quantum simulation. Being able to interface into these arrays to access the quantum information being processed and pass it along to another module remains a challenge. Ɛorđević et al . developed a hybrid quantum system that combines atoms held in optical tweezers and a nanophotonic cavity to demonstrate full quantum control, efficient quantum nondestructive readout, and entanglement of atom pairs (see the Perspective by Kaufman). By combining atomic manipulation both inside and away from the cavity field and shuffling the atom qubits into and out of the cavity mode, the authors demonstrate a viable optical interface that could be scaled to larger systems. ā€”ISO </jats:p

    Making Nd3+ a sensitive luminescent thermometer for physiological temperaturesā€”an account of pitfalls in boltzmann thermometry

    No full text
    Ratiometric luminescence thermometry employing luminescence within the biological transparency windows provides high potential for biothermal imaging. Nd3+ is a promising candidate for that purpose due to its intense radiative transitions within biological windows (BWs) I and II and the simultaneous efficient excitability within BW I. This makes Nd3+ almost unique among all lanthanides. Typically, emission from the two4F3/2 crystal field levels is used for thermometry but the small ~100 cmāˆ’1 energy separation limits the sensitivity. A higher sensitivity for physiological temperatures is possible using the luminescence intensity ratio (LIR) of the emissive transitions from the4F5/2 and4F3/2 excited spin-orbit levels. Herein, we demonstrate and discuss various pitfalls that can occur in Boltzmann thermometry if this particular LIR is used for physiological temperature sensing. Both microcrystalline, dilute (0.1%) Nd3+-doped LaPO4 and LaPO4: x% Nd3+ (x = 2, 5, 10, 25, 100) nanocrystals serve as an illustrative example. Besides structural and optical characterization of those luminescent thermometers, the impact and consequences of the Nd3+ concentration on their luminescence and performance as Boltzmann-based thermometers are analyzed. For low Nd3+ concentrations, Boltzmann equilibrium starts just around 300 K. At higher Nd3+ concentrations, cross-relaxation processes enhance the decay rates of the4F3/2 and4F5/2 levels making the decay faster than the equilibration rates between the levels. It is shown that the onset of the useful temperature sensing range shifts to higher temperatures, even above ~ 450 K for Nd concentrations over 5%. A microscopic explanation for pitfalls in Boltzmann thermometry with Nd3+ is finally given and guidelines for the usability of this lanthanide ion in the field of physiological temperature sensing are elaborated. Insight in competition between thermal coupling through non-radiative transitions and population decay through cross-relaxation of the4F5/2 and4F3/2 spin-orbit levels of Nd3+ makes it possible to tailor the thermometric performance of Nd3+ to enable physiological temperature sensing

    DOI:10.2298/ABS1001075T EFFECTS OF CISPLATIN ON LIPID PEROXIDATION AND THE GLUTATHIONE REDOX STATUS IN THE LIVER OF MALE RATS: THE PROTECTIVE ROLE OF SELENIUM

    No full text
    Abstract ā€“The role of oxidative stress in cisplatin (CP) toxicity and its prevention by pretreatment with selenium (Se) was investigated. Male Wistar albino rats were injected with a single dose of cisplatin (7.5 mg CP/kg b.m., i.p.) and selenium (6 mg Se/kg b.m, as Na2SeO3, i.p.) alone or in combination. The results suggest that CP intoxication induces oxidative stress and alters the glutathione redox status: reduced glutathione (GSH), oxidized glutathione (GSSG) and the GSH/GSSG ratio (GSH RI), resulting in increased lipid peroxidation (LPO) in rat liver. The pretreatment with selenium prior to CP treatment showed a protective effect against the toxic influence of CP on peroxidation of the membrane lipids and an altering of the glutathione redox status in the liver of rats. From our results we conclude that selenium functions as a potent antioxidant and suggest that it can control CP-induced hepatotoxicity in rats
    corecore