16,618 research outputs found
Nasa university program review conference. summary report, mar. 1 - 3, 1965
The purpose of the NASA University Program Review Conference was to describe the nature of the Program, the manner in which it is being conducted, the results that it is producing, and the impact it may be having. The presentations, except for some expository papers by NASA offi- cials, were made by members of the university and nonprofit community. ference message as it has come to me, a university professor spending a year in making a study of NASA-University relations under a NASA contract with my institution. In preparing the report, my guiding principle has been to try to maximize its usefulness by making it accurate, brief, and prompt. These qualities are largely incompatible, and I am sure that the result of my search for an optimum compromise will please no one. Open editorializing is mainly confined to a brief section constituting my Evaluation of Program. The complete transcript will shortly be available, to stand as the authoritative source for statements that anyone may wish to attribute to the speakers
Strongly magnetized classical plasma models
Discrete particle processes in the presence of a strong external magnetic field were investigated. These processes include equations of state and other equilibrium thermodynamic relations, thermal relaxation phenomena, transport properties, and microscopic statistical fluctuations in such quantities as the electric field and the charge density. Results from the equilibrium statistical mechanics of two-dimensional plasmas are discussed, along with nonequilibrium statistical mechanics of the electrostatic guiding-center plasma (a two-dimensional plasma model)
Apparent suppression of turbulent magnetic dynamo action by a dc magnetic field
Numerical studies of the effect of a dc magnetic field on dynamo action
(development of magnetic fields with large spatial scales), due to
helically-driven magnetohydrodynamic turbulence, are reported. The apparent
effect of the dc magnetic field is to suppress the dynamo action, above a
relatively low threshold. However, the possibility that the suppression results
from an improper combination of rectangular triply spatially-periodic boundary
conditions and a uniform dc magnetic field is addressed: heretofore a common
and convenient computational convention in turbulence investigations. Physical
reasons for the observed suppression are suggested. Other geometries and
boundary conditions are offered for which the dynamo action is expected not to
be suppressed by the presence of a dc magnetic field component.Comment: To appear in Physics of Plasma
Alternative statistical-mechanical descriptions of decaying two-dimensional turbulence in terms of "patches" and "points"
Numerical and analytical studies of decaying, two-dimensional (2D)
Navier-Stokes (NS) turbulence at high Reynolds numbers are reported. The effort
is to determine computable distinctions between two different formulations of
maximum entropy predictions for the decayed, late-time state. Both formulations
define an entropy through a somewhat ad hoc discretization of vorticity to the
"particles" of which statistical mechanical methods are employed to define an
entropy, before passing to a mean-field limit. In one case, the particles are
delta-function parallel "line" vortices ("points" in two dimensions), and in
the other, they are finite-area, mutually-exclusive convected "patches" of
vorticity which in the limit of zero area become "points." We use
time-dependent, spectral-method direct numerical simulation of the
Navier-Stokes equations to see if initial conditions which should relax to
different late-time states under the two formulations actually do so.Comment: 21 pages, 24 figures: submitted to "Physics of Fluids
Velocity field distributions due to ideal line vortices
We evaluate numerically the velocity field distributions produced by a
bounded, two-dimensional fluid model consisting of a collection of parallel
ideal line vortices. We sample at many spatial points inside a rigid circular
boundary. We focus on ``nearest neighbor'' contributions that result from
vortices that fall (randomly) very close to the spatial points where the
velocity is being sampled. We confirm that these events lead to a non-Gaussian
high-velocity ``tail'' on an otherwise Gaussian distribution function for the
Eulerian velocity field. We also investigate the behavior of distributions that
do not have equilibrium mean-field probability distributions that are uniform
inside the circle, but instead correspond to both higher and lower mean-field
energies than those associated with the uniform vorticity distribution. We find
substantial differences between these and the uniform case.Comment: 21 pages, 9 figures. To be published in Physical Review E
(http://pre.aps.org/) in May 200
Small scale structures in three-dimensional magnetohydrodynamic turbulence
We investigate using direct numerical simulations with grids up to 1536^3
points, the rate at which small scales develop in a decaying three-dimensional
MHD flow both for deterministic and random initial conditions. Parallel current
and vorticity sheets form at the same spatial locations, and further
destabilize and fold or roll-up after an initial exponential phase. At high
Reynolds numbers, a self-similar evolution of the current and vorticity maxima
is found, in which they grow as a cubic power of time; the flow then reaches a
finite dissipation rate independent of Reynolds number.Comment: 4 pages, 3 figure
Anisotropy in MHD turbulence due to a mean magnetic field
The development of anisotropy in an initially isotropic spectrum is studied numerically for two-dimensional magnetohydrodynamic turbulence. The anisotropy develops due to the combined effects of an externally imposed dc magnetic field and viscous and resistive dissipation at high wave numbers. The effect is most pronounced at high mechanical and magnetic Reynolds numbers. The anisotropy is greater at the higher wave numbers
- …