110 research outputs found

    Acanthocephalan size and sex affect the modification of intermediate host colouration

    Get PDF
    For trophically transmitted parasites, transitional larval size is often related to fitness. Larger parasites may have higher establishment success and/or adult fecundity, but prolonged growth in the intermediate host increases the risk of failed transmission via natural host mortality. We investigated the relationship between the larval size of an acanthocephalan (Acanthocephalus lucii) and a trait presumably related to transmission, i.e. altered colouration in the isopod intermediate host. In natural collections, big isopods harboured larger worms and had more modified (darker) abdominal colouration than small hosts. Small isopods infected with a male parasite tended to have darker abdominal pigmentation than those infected with a female, but this difference was absent in larger hosts. Female size increases rapidly with host size, so females may have more to gain than males by remaining in and growing mutually with small hosts. In experimental infections, a large total parasite volume was associated with darker host respiratory operculae, especially when it was distributed among fewer worms. Our results suggest that host pigment alteration increases with parasite size, albeit differently for male and female worms. This may be an adaptive strategy if, as parasites grow, the potential for additional growth decreases and the likelihood of host mortality increase

    Seasonal changes in host phenotype manipulation by an acanthocephalan: time to be transmitted?

    Get PDF
    Many complex life cycle parasites exhibit seasonal transmission between hosts. Expression of parasite traits related to transmission, such as the manipulation of host phenotype, may peak in seasons when transmission is optimal. The acanthocephalan Acanthocephalus lucii is primarily transmitted to its fish definitive host in spring. We assessed whether the parasitic alteration of 2 traits (hiding behaviour and coloration) in the isopod intermediate host was more pronounced at this time of year. Refuge use by infected isopods was lower, relative to uninfected isopods, in spring than in summer or fall. Infected isopods had darker abdomens than uninfected isopods, but this difference did not vary between seasons. The level of host alteration was unaffected by exposing isopods to different light and temperature regimes. In a group of infected isopods kept at 4°C, refuge use decreased from November to May, indicating that reduced hiding in spring develops during winter. Keeping isopods at 16°C instead of 4°C resulted in higher mortality but not accelerated changes in host behaviour. Our results suggest that changes in host and/or parasite age, not environmental conditions, underlie the seasonal alteration of host behaviour, but further work is necessary to determine if this is an adaptive parasite strategy to be transmitted in a particular seaso

    Flavor and Charge Symmetry in the Parton Distributions of the Nucleon

    Get PDF
    Recent calculations of charge symmetry violation(CSV) in the valence quark distributions of the nucleon have revealed that the dominant symmetry breaking contribution comes from the mass associated with the spectator quark system.Assuming that the change in the spectator mass can be treated perturbatively, we derive a model independent expression for the shift in the parton distributions of the nucleon. This result is used to derive a relation between the charge and flavor asymmetric contributions to the valence quark distributions in the proton, and to calculate CSV contributions to the nucleon sea. The CSV contribution to the Gottfried sum rule is also estimated, and found to be small

    Reconstruction Mechanism of FCC Transition-Metal (001) Surfaces

    Full text link
    The reconstruction mechanism of (001) fcc transition metal surfaces is investigated using a full-potential all-electron electronic structure method within density-functional theory. Total-energy supercell calculations confirm the experimental finding that a close-packed quasi-hexagonal overlayer reconstruction is possible for the late 5dd-metals Ir, Pt, and Au, while it is disfavoured in the isovalent 4dd metals (Rh, Pd, Ag). The reconstructive behaviour is driven by the tensile surface stress of the unreconstructed surfaces; the stress is significantly larger in the 5dd metals than in 4dd ones, and only in the former case it overcomes the substrate resistance to the required geometric rearrangement. It is shown that the surface stress for these systems is due to dd charge depletion from the surface layer, and that the cause of the 4th-to-5th row stress difference is the importance of relativistic effects in the 5dd series.Comment: RevTeX 3.0, 12 pages, 1 PostScript figure available upon request] 23 May 199

    Theoretical analysis of the electronic structure of the stable and metastable c(2x2) phases of Na on Al(001): Comparison with angle-resolved ultra-violet photoemission spectra

    Full text link
    Using Kohn-Sham wave functions and their energy levels obtained by density-functional-theory total-energy calculations, the electronic structure of the two c(2x2) phases of Na on Al(001) are analysed; namely, the metastable hollow-site structure formed when adsorption takes place at low temperature, and the stable substitutional structure appearing when the substrate is heated thereafter above ca. 180K or when adsorption takes place at room temperature from the beginning. The experimentally obtained two-dimensional band structures of the surface states or resonances are well reproduced by the calculations. With the help of charge density maps it is found that in both phases, two pronounced bands appear as the result of a characteristic coupling between the valence-state band of a free c(2x2)-Na monolayer and the surface-state/resonance band of the Al surfaces; that is, the clean (001) surface for the metastable phase and the unstable, reconstructed "vacancy" structure for the stable phase. The higher-lying band, being Na-derived, remains metallic for the unstable phase, whereas it lies completely above the Fermi level for the stable phase, leading to the formation of a surface-state/resonance band-structure resembling the bulk band-structure of an ionic crystal.Comment: 11 pages, 11 postscript figures, published in Phys. Rev. B 57, 15251 (1998). Other related publications can be found at http://www.rz-berlin.mpg.de/th/paper.htm

    Surface Core Level Shifts of Clean and Oxygen Covered Ru(0001)

    Full text link
    We have performed high resolution XPS experiments of the Ru(0001) surface, both clean and covered with well-defined amounts of oxygen up to 1 ML coverage. For the clean surface we detected two distinct components in the Ru 3d_{5/2} core level spectra, for which a definite assignment was made using the high resolution Angle-Scan Photoelectron Diffraction approach. For the p(2x2), p(2x1), (2x2)-3O and (1x1)-O oxygen structures we found Ru 3d_{5/2} core level peaks which are shifted up to 1 eV to higher binding energies. Very good agreement with density functional theory calculations of these Surface Core Level Shifts (SCLS) is reported. The overriding parameter for the resulting Ru SCLSs turns out to be the number of directly coordinated O atoms. Since the calculations permit the separation of initial and final state effects, our results give valuable information for the understanding of bonding and screening at the surface, otherwise not accessible in the measurement of the core level energies alone.Comment: 16 pages including 10 figures. Submitted to Phys. Rev. B. Related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm

    Valence Quark Spin Distribution Functions

    Get PDF
    The hyperfine interactions of the constituent quark model provide a natural explanation for many nucleon properties, including the Delta-N splitting, the charge radius of the neutron, and the observation that the proton's quark distribution function ratio d(x)/u(x)->0 as x->1. The hyperfine-perturbed quark model also makes predictions for the nucleon spin-dependent distribution functions. Precision measurements of the resulting asymmetries A_1^p(x) and A_1^n(x) in the valence region can test this model and thereby the hypothesis that the valence quark spin distributions are "normal".Comment: 16 pages, 2 Postscript figure

    Nuclear dependence coefficient α(A,qT)\alpha(A,q_T) for the Drell-Yan and J/ψ\psi production

    Full text link
    Define the nuclear dependence coefficient α(A,qT)\alpha(A,q_T) in terms of ratio of transverse momentum spectrum in hadron-nucleus and in hadron-nucleon collisions: dσhAdqT2/dσhNdqT2Aα(A,qT)\frac{d\sigma^{hA}}{dq_T^2}/ \frac{d\sigma^{hN}}{dq_T^2}\equiv A^{\alpha(A,q_T)}. We argue that in small qTq_T region, the α(A,qT)\alpha(A,q_T) for the Drell-Yan and J/ψ\psi production is given by a universal function:\ a+bqT2a+b q_T^2, where parameters a and b are completely determined by either calculable quantities or independently measurable physical observables. We demonstrate that this universal function α(A,qT)\alpha(A,q_T) is insensitive to the A for normal nuclear targets. For a color deconfined nuclear medium, the α(A,qT)\alpha(A,q_T) becomes strongly dependent on the A. We also show that our α(A,qT)\alpha(A,q_T) for the Drell-Yan process is naturally linked to perturbatively calculated α(A,qT)\alpha(A,q_T) at large qTq_T without any free parameters, and the α(A,qT)\alpha(A,q_T) is consistent with E772 data for all qTq_T.Comment: latex, 28 pages, 10 figures, updated two figures, and add more discussion

    Mutual heavy ion dissociation in peripheral collisions at ultrarelativistic energies

    Get PDF
    We study mutual dissociation of heavy nuclei in peripheral collisions at ultrarelativistic energies. Earlier this process was proposed for beam luminosity monitoring via simultaneous registration of forward and backward neutrons in zero degree calorimeters at Relativistic Heavy Ion Collider. Electromagnetic dissociation of heavy ions is considered in the framework of the Weizsacker-Williams method and simulated by the RELDIS code. Photoneutron cross sections measured in different experiments and calculated by the GNASH code are used as input for the calculations of dissociation cross sections. The difference in results obtained with different inputs provides a realistic estimation for the systematic uncertainty of the luminosity monitoring method. Contribution to simultaneous neutron emission due to grazing nuclear interactions is calculated within the abrasion model. Good description of CERN SPS experimental data on Au and Pb dissociation gives confidence in predictive power of the model for AuAu and PbPb collisions at RHIC and LHC.Comment: 46 pages with 7 tables and 13 figures, numerical integration accuracy improved, next-to-leading-order corrections include
    corecore