284 research outputs found

    Perovskite solar cells: progress and advancements

    Get PDF
    Organic–inorganic hybrid perovskite solar cells (PSCs) have emerged as a new class of optoelectronic semiconductors that revolutionized the photovoltaic research in the recent years. The perovskite solar cells present numerous advantages include unique electronic structure, bandgap tunability, superior charge transport properties, facile processing, and low cost. Perovskite solar cells have demonstrated unprecedented progress in efficiency and its architecture evolved over the period of the last 5–6 years, achieving a high power conversion efficiency of about 22% in 2016, serving as a promising candidate with the potential to replace the existing commercial PV technologies. This review discusses the progress of perovskite solar cells focusing on aspects such as superior electronic properties and unique features of halide perovskite materials compared to that of conventional light absorbing semiconductors. The review also presents a brief overview of device architectures, fabrication methods, and interface engineering of perovskite solar cells. The last part of the review elaborates on the major challenges such as hysteresis and stability issues in perovskite solar cells that serve as a bottleneck for successful commercialization of this promising PV technology

    A Neural Radiance Field-Based Architecture for Intelligent Multilayered View Synthesis

    Get PDF
    A mobile ad hoc network is made up of a number of wireless portable nodes that spontaneously come together en route for establish a transitory network with no need for any central management. A mobile ad hoc network (MANET) is made up of a sizable and reasonably dense community of mobile nodes that travel across any terrain and rely solely on wireless interfaces for communication, not on any well before centralized management. Furthermore, routing be supposed to offer a method for instantly delivering data across a network between any two nodes. Finding the best packet routing from across infrastructure is the major issue, though. The proposed protocol's major goal is to identify the least-expensive nominal capacity acquisition that assures the transportation of realistic transport that ensures its durability in the event of any node failure. This study suggests the Optimized Route Selection via Red Imported Fire Ants (RIFA) Strategy as a way to improve on-demand source routing systems. Predicting Route Failure and energy Utilization is used to pick the path during the routing phase. Proposed work assess the results of the comparisons based on performance parameters like as energy usage, packet delivery rate (PDR), and end-to-end (E2E) delay. The outcome demonstrates that the proposed strategy is preferable and increases network lifetime while lowering node energy consumption and typical E2E delay under the majority of network performance measures and factors

    PHYTOCHEMICAL SCREENING, ANTIOXIDANT AND ANTIBACTERIAL ACTIVITIES OF MILLINGTONIA HORTENSIS (L)

    Get PDF
    Objective: Millingtonia hortensis Linn (Bignoniaceae) is commonly known as cork tree and Akash neem. Aim of studies to determine the antioxidant activity and antibacterial activity.Methods: The antioxidant activity of different solvent extracts were measured by chemical analyses involving the assay of 1,1-diphenyl-2-picryhydrazyl (DPPH) radical scavenging activity and super oxide radical scavenging activity.Results: Phytochemicals (secondary metabolites) screening of methanol, chloroform, ethanol, petroleum ether, aqueous leaf extracts revealed the presence of carbohydrates, tannins, saponins, flavonoids, alkaloids, betacyanins, phenols and coumarins.Conclusion: The presence of these phytochemicals and antioxidant capacity support the use of this plant as an antibacterial agent against the group of micro organisms tested.Â

    Influence of UV Treatment on the Food Safety Status of a Model Aquaponic System

    Get PDF
    Few microbial studies in aquaponics, a growing trend in food production, have been conducted to determine food safety status. The aim of this study was to determine the food safety status and the effectiveness of ultraviolet treatment (15 W, luminous flux of 900 lm) as a food safety intervention in reducing the microbial loads of the water system in a model aquaponic unit growing lettuce, basil, and barramundi (Australian Sea Bass). Sweet basil, bibb lettuce, water samples, and fish swabs were collected throughout the 118-day production period, and microbial analysis was conducted in triplicate for the presence of E. coli O157:H7, Salmonella spp., and the prevalence of aerobic plate counts (APC), coliforms, and fecal coliforms in these systems. Absence of foodborne pathogens was confirmed using ELISA technology and enumeration through petrifilms (coliform/E. coli). A significant increase was observed in aerobic plate counts over the trial period (1 to 3 log10 CFU·mL−1) in the presence and absence of UV (p \u3e 0.05). Ultraviolet treatment did not significantly reduce the APC or coliform counts when compared to the control system samples. Future work should focus on improving the unit design, the evaluation of bio-solid filtration, and other food safety interventions

    Bactericidal activity of biosynthesized silver nanoparticles against human pathogenic bacteria

    Get PDF
    Green synthesis is an attractive and eco-friendly approach to generate potent antibacterial silver nanoparticles (Ag-NPs). Such particles have long been used to fight bacteria and represent a promising tool to overcome the emergence of antibiotic-resistant bacteria. In this study, green synthesis of Ag-NPs was attempted using plant extracts of Aloe vera, Portulaca oleracea and Cynodon dactylon. The identity and size of Ag-NPs was characterized by ultraviolet–visible spectrophotometer and scanning electron microscopy. Monodispersed Ag-NPs were produced with a range of different sizes based on the plant extract used. The bactericidal activity of Ag-NPs against a number of human pathogenic bacteria was determined using the disc diffusion method. The results showed that Gram positive bacteria were more susceptible than Gram negative ones to these antibacterial agents. The minimum inhibitory concentration was determined using the 96-well plate method. Finally, the mechanism by which Ag-NPs affect bacteria was investigated by SEM analysis. Bacteria treated with Ag-NPs were seen to undergo shrinkage and to lose their viability. This study provides evidence for a cheap and effective method for synthesizing potent bactericidal Ag-NPs and demonstrates their effectiveness against human pathogenic bacteria

    A review of mixed-potential type zirconia-based gas sensors

    Get PDF

    Green fabrication of stable lead-free bismuth based perovskite solar cells using a non-toxic solvent

    Get PDF
    The very fast evolution in certified efficiency of lead-halide organic-inorganic perovskite solar cells to 24.2%, on par and even surpassing the record for polycrystalline silicon solar cells (22.3%), bears the promise of a new era in photovoltaics and revitalisation of thin film solar cell technologies. However, the presence of toxic lead and particularly toxic solvents during the fabrication process makes large-scale manufacturing of perovskite solar cells challenging due to legislation and environment issues. For lead-free alternatives, non-toxic tin, antimony and bismuth based solar cells still rely on up-scalable fabrication processes that employ toxic solvents. Here we employ non-toxic methyl-acetate solution processed (CH3NH3)3Bi2I9 films to fabricate lead-free, bismuth based (CH3NH3)3Bi2I9 perovskites on mesoporous TiO2 architecture using a sustainable route. Optoelectronic characterization, X-ray diffraction and electron microscopy show that the route can provide homogeneous and good quality (CH3NH3)3Bi2I9 films. Fine-tuning the perovskite/hole transport layer interface by the use of conventional 2,2′,7,7′-tetrakis (N,N′-di-p-methoxyphenylamino)−9,9′-spirbiuorene, known as Spiro-OMeTAD, and poly(3-hexylthiophene-2,5-diyl - P3HT as hole transporting materials, yields power conversion efficiencies of 1.12% and 1.62% under 1 sun illumination. Devices prepared using poly(3-hexylthiophene-2,5-diyl hole transport layer shown 300 h of stability under continuous 1 sun illumination, without the use of an ultra violet-filter

    Metal oxide semiconducting interfacial layers for photovoltaic and photocatalytic applications

    Get PDF
    • …
    corecore