26,196 research outputs found
The structural, mechanical, electronic, optical and thermodynamic properties of t-XAs (X Si, Ge and Sn) by first-principles calculations
The structural, mechanical, electronic, optical and thermodynamic properties
of the t-XAs (X Si, Ge and Sn) with
tetragonal structure have been investigated by first principles calculations.
Our calculated results show that these compounds are mechanically and
dynamically stable. By the study of elastic anisotropy, it is found that the
anisotropic of the t-SnAs is stronger than that
of t-SiAs and
t-GeAs. The band structures and density of states
show that the t-XAs (Si, Ge and Sn) are
semiconductors with narrow band gaps. Based on the analyses of electron density
difference, in t-XAs As atoms get electrons, X
atoms lose electrons. The calculated static dielectric constants,
, are 15.5, 20.0 and 15.1 eV for
t-XAs (X Si, Ge and Sn), respectively. The
Dulong-Petit limit of t-XAs is about 10 J
molK. The thermodynamic stability successively
decreases from t-SiAs to
t-GeAs to t-SnAs.Comment: 14 pages, 10 figures, 6 table
A Novel Large Moment Antiferromagnetic Order in K0.8Fe1.6Se2 Superconductor
The discovery of cuprate high Tc superconductors has inspired searching for
unconventional su- perconductors in magnetic materials. A successful recipe has
been to suppress long-range order in a magnetic parent compound by doping or
high pressure to drive the material towards a quantum critical point, which is
replicated in recent discovery of iron-based high TC superconductors. The
long-range magnetic order coexisting with superconductivity has either a small
magnetic moment or low ordering temperature in all previously established
examples. Here we report an exception to this rule in the recently discovered
potassium iron selenide. The superconducting composition is identified as the
iron vacancy ordered K0.8Fe1.6Se2 with Tc above 30 K. A novel large moment 3.31
{\mu}B/Fe antiferromagnetic order which conforms to the tetragonal crystal
symmetry has the unprecedentedly high an ordering temperature TN = 559 K for a
bulk superconductor. Staggeredly polarized electronic density of states thus is
suspected, which would stimulate further investigation into superconductivity
in a strong spin-exchange field under new circumstance.Comment: 5 figures, 5 pages, and 2 tables in pdf which arXiv.com cannot tak
Generation and control of Greenberger-Horne-Zeilinger entanglement in superconducting circuits
Going beyond the entanglement of microscopic objects (such as photons, spins,
and ions), here we propose an efficient approach to produce and control the
quantum entanglement of three macroscopic coupled superconducting qubits. By
conditionally rotating, one by one, selected Josephson charge qubits, we show
that their Greenberger-Horne-Zeilinger (GHZ) entangled states can be
deterministically generated. The existence of GHZ correlations between these
qubits could be experimentally demonstrated by effective single-qubit
operations followed by high-fidelity single-shot readouts. The possibility of
using the prepared GHZ correlations to test the macroscopic conflict between
the noncommutativity of quantum mechanics and the commutativity of classical
physics is also discussed.Comment: 4 Pages with 1 figure. to appear in Physical Review Letter
Real-Time Hyperbola Recognition and Fitting in GPR Data
The problem of automatically recognising and fitting hyperbolae from Ground Penetrating Radar (GPR) images is addressed, and a novel technique computationally suitable for real time on-site application is
proposed. After pre-processing of the input GPR images, a novel thresholding method is applied to separate the regions of interest from background. A novel column-connection clustering (C3) algorithm is then applied to separate the regions of interest from each other. Subsequently,
a machine learnt model is applied to identify hyperbolic signatures from outputs of the C3 algorithm and a hyperbola is fitted to each such signature with an orthogonal distance hyperbola fitting algorithm. The
novel clustering algorithm C3 is a central component of the proposed system, which enables the identification of hyperbolic signatures and hyperbola fitting. Only two features are used in the machine learning algorithm, which is easy to train using a small set of training data. An
orthogonal distance hyperbola fitting algorithm for ‘south-opening’
hyperbolae is introduced in this work, which is more robust and accurate than algebraic hyperbola fitting algorithms. The proposed method can successfully recognise and fit hyperbolic signatures with intersections
with others, hyperbolic signatures with distortions and incomplete hyperbolic signatures with one leg fully or largely missed. As an additional novel contribution, formulae to compute an initial ‘south-opening’ hyperbola directly from a set of given points are derived, which make the system more efficient. The parameters obtained by fitting
hyperbolae to hyperbolic signatures are very important features, they can be used to estimate the location, size of the related target objects, and the average propagation velocity of the electromagnetic wave in the medium. The effectiveness of the proposed system is tested on both
synthetic and real GPR data
Geometric entanglement from matrix product state representations
An efficient scheme to compute the geometric entanglement per lattice site
for quantum many-body systems on a periodic finite-size chain is proposed in
the context of a tensor network algorithm based on the matrix product state
representations. It is systematically tested for three prototypical critical
quantum spin chains, which belong to the same Ising universality class. The
simulation results lend strong support to the previous claim [Q.-Q. Shi, R.
Or\'{u}s, J. O. Fj{\ae}restad, and H.-Q. Zhou, New J. Phys \textbf{12}, 025008
(2010); J.-M. St\'{e}phan, G. Misguich, and F. Alet, Phys. Rev. B \textbf{82},
180406R (2010)] that the leading finite-size correction to the geometric
entanglement per lattice site is universal, with its remarkable connection to
the celebrated Affleck-Ludwig boundary entropy corresponding to a conformally
invariant boundary condition.Comment: 4+ pages, 3 figure
Enhanced Steroid Metabolites Production by Resting Cell Phytosterol Bioconversion
The steroid metabolites 9-hydroxy-androstenedione (9-OH-AD), androstadienedione (ADD) and androstenedione (AD) are important steroidal pharmaceuticals. In order to raise the production of steroid metabolites, an efficient resting cell phytosterol bioconversion process was developed to produce 9-OH-AD in the presence of hydroxypropyl-β-cyclodextrin (HP-β-CD). Cell growth medium containing phytosterol as an inducer positively improved cell activity. Under aerobic conditions, bioconversion proceeded at 70 g L–1 phytosterol in the presence of HP-β-CD (the optimized molar ratio of HP-β-CD/phytosterol was 1:1) with 30 g L–1 resting Mycobacterium neoaurum NwIB-yV cells (cell dry mass) in a 5-L bioreactor, where 9-OH-AD production and space-time yield reached 36.4 g L–1 and 9.1 g L–1 d–1, respectively. The recycling of cells and HP-β-CD enables cost-saving and industrial applications. This bioprocess was also applied for the production of ADD and AD. The production of these steroid metabolites was much higher than that reported in previous studies
Application of anaerobic granular sludge for competitive biosorption of methylene blue and Pb(II): Fluorescence and response surface methodology
© 2015 Elsevier Ltd. This study assessed the biosorption of anaerobic granular sludge (AGS) and its capacity as a biosorbent to remove Pb(II) and methylene blue (MB) from multi-components aqueous solution. It emerged that the biosorption data fitted well to the pseudo-second-order and Langmuir adsorption isotherm models in both single and binary systems. In competitive biosorption systems, Pb(II) and MB will suppress each other's biosorption capacity. Spectroscopic analysis, including Fourier transform infrared spectroscopy (FTIR) and fluorescence spectroscopy were integrated to explain this interaction. Hydroxyl and amine groups in AGS were the key functional groups for sorption. Three-dimensional excitation-emission matrix (3D-EEM) implied that two main protein-like substances were identified and quenched when Pb(II) or MB were present. Response surface methodology (RSM) confirmed that the removal efficiency of Pb(II) and MB reached its peak when the concentration ratios of Pb(II) and MB achieved a constant value of 1
Isoscaling in the Lattice Gas Model
The isoscaling behavior is investigated using the isotopic/isobaric yields
from the equilibrated thermal source which is prepared by the lattice gas model
for lighter systems with A = 36. The isoscaling parameters and
- are observed to drop with temperature. The difference of neutron and
proton chemical potential shows a turning point around 5 MeV where the liquid
gas phase transition occurs in the model. The relative free neutron or proton
density shows a nearly linear relation with the N/Z (neutron to proton ratio)
of system and the isospin fractionation is observed.Comment: 5 figures, 5 pages; the final version to appear in Phys Rev
- …