18,111 research outputs found

    Intensity correlations and entanglement by frequency doubling in a dual ported resonator

    Full text link
    We show that non-classical intensity correlations and quadrature entanglement can be generated by frequency doubling in a resonator with two output ports. We predict twin-beam intensity correlations 6 dB below the coherent state limit, and that the product of the inference variances of the quadrature fluctuations gives an Einstein-Podolsky-Rosen (EPR) correlation coefficient of V_EPR = 0.6 < 1. Comparison with an entanglement source based on combining two frequency doublers with a beam splitter shows that the dual ported resonator provides stronger entanglement at lower levels of individual beam squeezing. Calculations are performed using a self-consistent propagation method that does not invoke a mean field approximation. Results are given for physically realistic parameters that account for the Gaussian shape of the intracavity beams, as well as intracavity losses.Comment: 12 pages, 9 figures, normalization corrected, fig 3 and fig 7 update

    Entanglement and statistics in Hong-Ou-Mandel interferometry

    Get PDF
    Hong-Ou-Mandel interferometry allows one to detect the presence of entanglement in two-photon input states. The same result holds for two-particles input states which obey to Fermionic statistics. In the latter case however anti-bouncing introduces qualitative differences in the interferometer response. This effect is analyzed in a Gedankenexperiment where the particles entering the interferometer are assumed to belong to a one-parameter family of quons which continuously interpolate between the Bosonic and Fermionic statistics.Comment: 7 pages, 3 figures; minor editorial changes and new references adde

    Filling the Void: A Low Cost, High-Yield Method to Addressing Incidental Findings in Trauma Patients

    Get PDF
    In this study we: Report the incidence of incidental findings in a suburban trauma center treating primarily blunt and elderly trauma Propose simple solutions to increase the rate of disclosure to patientshttps://jdc.jefferson.edu/patientsafetyposters/1070/thumbnail.jp

    Experimental realization of strange nonchaotic attractors in a quasiperiodically forced electronic circuit

    Get PDF
    We have identified the three prominent routes, namely Heagy-Hammel, fractalization and intermittency routes, and their mechanisms for the birth of strange nonchaotic attractors (SNAs) in a quasiperiodically forced electronic system constructed using a negative conductance series LCR circuit with a diode both numerically and experimentally. The birth of SNAs by these three routes is verified from both experimental and their corresponding numerical data by maximal Lyapunov exponents, and their variance, Poincar\'e maps, Fourier amplitude spectrum, spectral distribution function and finite-time Lyapunov exponents. Although these three routes have been identified numerically in different dynamical systems, the experimental observation of all these mechanisms is reported for the first time to our knowledge and that too in a single second order electronic circuit.Comment: 21 figure

    Influence of blade aerodynamic model on prediction of helicopter rotor aeroacoustic signatures

    Get PDF
    Brown’s vorticity transport model has been used to investigate how the local blade aerodynamic model influences the quality of the prediction of the high-frequency airloads associated with blade–vortex interactions, and thus the accuracy with which the acoustic signature of a helicopter rotor can be predicted. The vorticity transport model can accurately resolve the structure of the wake of the rotor and allows significant flexibility in the way that the blade loading can be represented. The Second Higher-Harmonic Control Aeroacoustics Rotor Test was initiated to provide experimental insight into the acoustic signature of a rotor in cases of strong blade–vortex interaction. Predictions of two models for the local blade aerodynamics are compared with the test data. A marked improvement in accuracy of the predicted high-frequency airloads and acoustic signature is obtained when a lifting-chord model for the blade aerodynamics is used instead of a lifting-line-type approach. Errors in the amplitude and phase of the acoustic peaks are reduced, and the quality of the prediction is affected to a lesser extent by the computational resolution of the wake, with the lifting-chord model producing the best representation of the distribution of sound pressure below the rotor

    Bekenstein entropy bound for weakly-coupled field theories on a 3-sphere

    Get PDF
    We calculate the high temperature partition functions for SU(Nc) or U(Nc) gauge theories in the deconfined phase on S^1 x S^3, with scalars, vectors, and/or fermions in an arbitrary representation, at zero 't Hooft coupling and large Nc, using analytical methods. We compare these with numerical results which are also valid in the low temperature limit and show that the Bekenstein entropy bound resulting from the partition functions for theories with any amount of massless scalar, fermionic, and/or vector matter is always satisfied when the zero-point contribution is included, while the theory is sufficiently far from a phase transition. We further consider the effect of adding massive scalar or fermionic matter and show that the Bekenstein bound is satisfied when the Casimir energy is regularized under the constraint that it vanishes in the large mass limit. These calculations can be generalized straightforwardly for the case of a different number of spatial dimensions.Comment: 32 pages, 12 figures. v2: Clarifications added. JHEP versio

    A dynamical systems approach to the tilted Bianchi models of solvable type

    Full text link
    We use a dynamical systems approach to analyse the tilting spatially homogeneous Bianchi models of solvable type (e.g., types VIh_h and VIIh_h) with a perfect fluid and a linear barotropic Îł\gamma-law equation of state. In particular, we study the late-time behaviour of tilted Bianchi models, with an emphasis on the existence of equilibrium points and their stability properties. We briefly discuss the tilting Bianchi type V models and the late-time asymptotic behaviour of irrotational Bianchi VII0_0 models. We prove the important result that for non-inflationary Bianchi type VIIh_h models vacuum plane-wave solutions are the only future attracting equilibrium points in the Bianchi type VIIh_h invariant set. We then investigate the dynamics close to the plane-wave solutions in more detail, and discover some new features that arise in the dynamical behaviour of Bianchi cosmologies with the inclusion of tilt. We point out that in a tiny open set of parameter space in the type IV model (the loophole) there exists closed curves which act as attracting limit cycles. More interestingly, in the Bianchi type VIIh_h models there is a bifurcation in which a set of equilibrium points turn into closed orbits. There is a region in which both sets of closed curves coexist, and it appears that for the type VIIh_h models in this region the solution curves approach a compact surface which is topologically a torus.Comment: 29 page

    Influence of blade aerodynamic model on the prediction of helicopter high-frequency airloads

    Get PDF
    Brown’s vorticity transport model has been used to investigate the inïŹ‚uence of the blade aerodynamic model on the accuracy with which the high-frequency airloads associated with helicopter blade–vortex interactions can be predicted. The model yields an accurate representation of the wake structure yet allows signiïŹcant ïŹ‚exibility in the way that the blade loading can be represented. A simple lifting-line model and a somewhat more sophisticated liftingchord model, based on unsteady thin aerofoil theory, are compared. A marked improvement in the accuracy of the predicted high-frequency airloads of the higher harmonic control aeroacoustic rotor is obtained when the liftingchord model is used instead of the lifting-line approach, and the quality of the prediction is affected less by the computational resolution of the wake. The lifting-line model overpredicts the amplitude of the lift response to blade–vortex interactions as the computational grid is reïŹned, exposing the fundamental deïŹciencies in this approach when modeling the aerodynamic response of the blade to interactions with vortices that are much smaller than its chord. The airloads that are predicted using the lifting-chord model are relatively insensitive to the resolution of the computation, and there are fundamental reasons to believe that properly converged numerical solutions may be attainable using this approach

    Observation of twin beam correlations and quadrature entanglement by frequency doubling in a two-port resonator

    Get PDF
    We demonstrate production of quantum correlated and entangled beams by second harmonic generation in a nonlinear resonator with two output ports. The output beams at wavelength 428.5 nm exhibit 0.9 dB of nonclassical intensity correlations and 0.3 dB of entanglement.Comment: 5 pages, 7 figure
    • 

    corecore