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Abstract

We have identified the three prominent routes, namely Heagy-Hammel, fractalization and inter-

mittency routes, and their mechanisms for the birth of strange nonchaotic attractors (SNAs) in

a quasiperiodically forced electronic system constructed using a negative conductance series LCR

circuit with a diode both numerically and experimentally. The birth of SNAs by these three routes

is verified from both experimental and their corresponding numerical data by maximal Lyapunov

exponents, and their variance, Poincaré maps, Fourier amplitude spectrum, spectral distribution

function and finite-time Lyapunov exponents. Although these three routes have been identified

numerically in different dynamical systems, the experimental observation of all these mechanisms

is reported for the first time to our knowledge and that too in a single second order electronic

circuit.
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I. INTRODUCTION

Strange nonchaotic attractors are regarded as structures in between regularity and chaos.

They are geometrically strange as evidenced by their fractal nature, which is common to

all chaotic systems. However, they are nonchaotic in a dynamical sense because they do

not show sensitivity with respect to changes in initial conditions (as evidenced by negative

Lyapunov exponents), just like, regular systems. Following the initial study of Grebogi et

al. [1], several theoretical as well as experimental studies have been made pertaining to

the existence and characterization of SNAs in different quasiperiodically driven nonlinear

dynamical systems. In particular the SNAs have been reported to arise in many physically

relevant situations such as the quasiperiodically forced pendulum [2], the quantum particles

in quasiperiodic potentials [3], biological oscillators [4], the quasiperiodically driven Duffing-

type oscillators [5, 6, 7, 8], velocity dependent oscillators [9], electronic circuits [10, 11, 12]

and in certain maps [13, 14, 15, 16, 17, 18, 19, 20, 21, 22]. Also, these exotic attractors

were confirmed by an experiment consisting of a quasiperiodically forced, buckled, magneto-

elastic ribbon [23], in analog simulations of a multistable potential [24], and in a neon glow

discharge experiment [25]. The SNAs are also related to the Anderson localization in the

Schrödinger equation with a quasiperiodic potential [26, 27] and they may have a practical

application in secure communication [28, 29, 30].

The existence of SNAs in the above physically relevant systems has naturally motivated

further intense investigations on their nature and occurrence. A question of intense further

interest is the way in which they arise and ultimately become chaotic. In this context, several

routes have been identified in recent times and for a few of them typical mechanisms have

been found for the creation of SNAs. The major routes by which the SNAs appear may be

broadly classified as follows: torus doubling route to chaos via SNAs [22], gradual fractal-

ization of torus [17], the appearance of SNAs via blowout bifurcation [6], the occurrence of

SNAs through intermittent phenomenon [12, 13, 19, 20, 21, 31], the formation of SNAs via

homoclinic collision [27], remerging of torus doubling bifurcations and the birth of SNAs [9],

the existence of SNAs in the transition from two-frequency to three-frequency quasiperiod-

icity [7], the transition from three-frequency quasiperiodicity to chaos via a SNA [4] and the

transition to chaos via strange nonchaotic trajectories on the torus [32]. Different mecha-

nisms have been identified for some of the above routes, which are summarised in Table I.
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TABLE I: Routes and mechanisms of the onset of various SNAs

Type of route Mechanism

Heagy-Hammel [22] Collision of period-doubled torus with its

unstable parent

Gradual Fractilization [17] Increased wrinkling of torus without any

interaction with nearby periodic orbits

On-off intermittency [6] Loss of transverse stability of torus

Type-I intermittency [13] Due to saddle-node bifurcation, a torus is

replaced by SNA

Type-III intermittency [12] Subharmonic instability

Homoclinic collision [27] Homoclinic collisions of the quasiperiodic

orbits

Among these various routes/mechanisms for the birth of SNAs, the Heagy-Hammel, the

gradual fractalization and the intermittency routes/mechanisms to SNAs are quite general

and very robust to observe in a number of quasiperiodically forced nonlinear dynamical

systems. So far, these dynamical transitions are identified only through numerical anal-

ysis in different dynamical systems, prominent among being discrete and continuous flow

systems. Eventhough there exist various experimental realizations of SNAs in physical sys-

tems [23, 24, 25], the genesis of SNAs through different routes/mechanisms have not yet

been reported experimentally to the best of our knowledge, except for type-III intermittent

route by two of the present authors and K. Murali [12]. In view of this fact, in the present

work, we consider a simple nonlinear electronic circuit system, a second-order dissipative

nonautonomous negative conductance series LCR circuit, and investigate the dynamics of

the circuit under quasiperiodic forcing. We have identified that the circuit exhibits the

three familiar dynamical transitions, namely Heagy-Hammel, fractalization and intermit-

tency transitions involving SNAs. Further, the dynamical transitions are characterized from

both experimental and their corresponding numerical data by the maximal Lyapunov expo-

nents, and their variance, Poincaré maps, Fourier amplitude spectrum, spectral distribution

function and finite-time Lyapunov exponents. We believe that this is the first experimental
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demonstration of the existence of all the three prominent routes/mechanisms to SNA and

that too in a simple single electronic circuit to the best of our knowledge.

The paper is organized as follows. In Sec. II, we present a brief introduction of the

experimental realization of the quasiperiodically forced negative conductance series LCR

circuit with diode. In Sec. III, we describe the phase diagram for the circuit where the

regions corresponding to the different dynamical behaviors are delineated as a function of

parameters based on numerical analysis. Section IV is devoted to the computer simulation

studies and experimental confirmation of the creation of strange nonchaotic attractors via

Heagy-Hammel route while in Sec. V the creation of SNAs through gradual fractalization

is studied both numerically and experimentally. In Sec. VI, the type-I intermittent route

to SNA is shown to exist both numerically and experimentally. Finally, in Sec. VII, we

summarize our results.

II. CIRCUIT REALIZATION

We consider here the simple second-order nonlinear dissipative nonautonomous negative

conductance series LCR circuit with a single voltage generator introduced by us very recently

[33] and shown in Fig. 1(a). The circuit consists of a series LCR network, forced by two

sinusoidal voltage generators f1(t) and f2(t) (HP 33120A series). Two extra components,

namely a p-n junction diode (D) and a linear negative conductor gN , are connected in parallel

to the forced series LCR circuit. The negative conductor used here is a standard op-amp

based negative impedance converter (NIC). The diode operates as a nonlinear conductance,

limiting the amplitude of the oscillator. In the Fig. 1(a), v, iL and iD denote the voltage

across the capacitor C, the current through the inductor L and the current through the

diode D, respectively. The actual v − i characteristic of the diode (given by Fig. 1(b))

is approximated by the usual two segment piecewise-linear function (see Fig. 1(c)) which

facilitates numerical analysis considerably. The state equations governing the presently

proposed circuit given in Fig. 1 are a set of two first-order nonautonomous differential

equations:

C
dv

dt
= iL − iD + gNv, (1a)

L
diL
dt

= −RiL − v + Ef1 sin(ωf1t) + Ef2 sin(ωf2t). (1b)

4



R

iL

Cv +
-

L

iC
+

-

iN

D

iD

f1 (t)

(t)f2

gN-

v

iD
(mA)

0 0.5

gD
v

iD
(mA)

0 0.5

gD

(a)

(b) (c)

FIG. 1: (a) Circuit realization of a simple nonautonomous circuit. Here, D is the p-n junction

diode, and gN is negative conductance. The parameter values of the other elements are fixed as

L = 50.0 mH, C = 10.32 nF . The external emf f1(t) = Ef1 sinωf1t and f2(t) = Ef2 sinωf2t

are the function generators (HP 33120A). The values of ωf1 and ωf2 are chosen as 5982.0 Hz

and 13533.0 Hz respectively. The forcing amplitude Ef2 is fixed as 0.15 V . The other forcing

amplitude Ef1 and the resistance R are taken as control parameters which are being varied in our

analysis, (b) i − v characteristics of the p-n junction diode and (c) two segment piecewise-linear

function.

Here,

iD(v) =







gD(v − V ), v ≥ V,

0, v < V,
(1c)

where gD is the slope of the characteristic curve of the diode, Ef1 and Ef2 are the amplitudes

and ωf1 and ωf2 are the angular frequencies of the forcing functions f1(t) = Ef1 sin ωf1t

and f2(t) = Ef2 sin ωf2t, respectively. In the absence of Ef2, the circuit (Fig. 1(a)) has
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been shown to exhibit chaos and also strong chaos not only through the familiar period-

doubling route but also via torus breakdown followed by period-doubling bifurcations [33].

In order to construct the actual experimental circuit, the numerical simulation is used to

determine the correct parametric values for observing strange nonchaotic attractor. The

values of diode conductance gD, negative conductance gN and break voltage V are fixed as

1313 µS, −0.45 mS, and 0.5 V respectively. After some trial and error, we chose the actual

experimental values of the inductance, L, capacitance, C and external frequencies ωf1 and

ωf2 as 50 mH , 10.32 nF , 5892 Hz and 13533 Hz.

In order to study the dynamics of the circuit in detail, Eq. (1) can be converted into

a convenient normalized form for numerical analysis by using the the following rescaled

variables and parameters τ = t/
√

LC, x = v/V , y = (iL/V )(
√

(LC), E1 = Ef1/V ,

E2 = Ef2/V , ω1 = ωf1

√

(LC), ω2 = ωf2

√

(LC), a = R
√

(C/L), b = gN

√

(L/C), and

c = gD

√

(L/C).

The normalized evolution equation so obtained is

ẋ = y + f(x),

ẏ = −x − ay + E1 sin(θ) + E2 sin(φ),

θ̇ = ω1,

φ̇ = ω2, (2a)

where

f(x) =







(b − c)x + c, x ≥ 1,

bx, x < 1.
(2b)

Here dot stands for the differentiation with respect to τ .

The dynamics of Eq. (2) now depends on the parameters a, b, c, ω1, ω2, E1 and E2.

The rescaled parameters correspond to the values b = 0.99051, c = 2.89, ω1 = 0.133841,

ω2 = 0.307411 and E2 = 0.3. The amplitude of external quasiperiodic forcing E1 and the

value of a (or equivalently Ef1 and R in Eq. (1)) are taken as control parameters which are

being varied in our numerical (and experimental) studies.
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III. TWO PARAMETER PHASE DIAGRAM

To be concrete, we first consider the dynamics of the system (2) and numerically inte-

grate it. Using various characteristic quantities such as Lyapunov exponents, power spec-

tral measures and distribution of finite-time Lyapunov exponents, we distinguish periodic,

quasiperiodic, strange nonchaotic and chaotic attractors. In particular, the Poincaré surface

of section plot in the (φ−x) plane with φ modulo 2π can clearly indicate whether an attrac-

tor possesses a geometrically smooth or complicated structure. However, the estimation of

the Lyapunov exponents for this attractor(that is positive or negative value including zero)

as well as its variance will identify whether it is a chaotic or nonchaotic one. In addition to

the fact that the Lyapunov exponents are negative for SNAs, the variance - the fluctuations

in the measured value of the Lyapunov exponents on SNAs - is also found to be large. Finer

distinction among SNAs formed via different mechanisms can be made by analyzing the

nature of the variation of Lyapunov exponents and its variance near the transition values

of the control parameters. Then we experimentally confirm the results for circuit Eq. (1)

geometrically by observing the phase trajectory and the power spectrum. For our experi-

mental study of the circuit given in Fig. 1, a two dimensional projection of the attractor

is obtained by measuring the voltage v across the capacitor C and the current iL through

the inductor L and connected to the X and Y channels of an oscilloscope. The phase

trajectory obtained in the experiment is compared with the numerical trajectory. Then, a

live picture of the corresponding power spectrum (obtained from a digital storage oscillo-

scope - HP 54600 series) of the projected attractor has also been used to distinguish the

different attractors. In particular, to quantify the changes in the power spectrum obtained

by numerically and experimentally, we compute the so-called spectral distribution function

N(σ),which is defined to be the number of peaks in the Fourier amplitude spectrum larger

than some value, say σ. Scaling relations have been identified in the form N(σ)=log
10

(1/σ)

for the case of two-frequency quasiperiodic attractors and N(σ) = σ−β, 1 < β < 2, for the

strange nonchaotic attractors.

Further to identify the different attractors in the two-parameter plane the dynamical

transitions are traced out by two scanning procedures, both numerically and experimentally:

(1) varying E1(or Ef1) at fixed a (= R
√

(C/L), and (2) varying a (or = R) at fixed E1(or

Ef1/V ) in a 1000 X 1000 grid. The resulting phase diagram in the (a − E1) parameters
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FIG. 2: (Color online)(a) Phase diagram in the (a − E1) plane for the circuit given in Fig. 1,

represented by Eq. (2) and obtained from numerical data. 3T and 6T correspond to torus of period-

3 and period-6 attractors, respectively. F, HH and INT denote the formation of SNAs through

gradual fractalization, Heagy-Hammel and intermittency routes, respectively. C corresponds to

chaotic attractor. (b) An enlarged version of the intermittent region indicated in (a).

space in the region a ∈(0.9, 0.98) and E1 ∈(0.34, 0.7) is shown in Fig. 2 which has also

been verified in the corresponding (R − Ef1) experimental parameter space. The various

features indicated in the phase diagram are summarized and the main interesting features

of the dynamical transitions are elucidated in the following.

Transitions from the right to left lower down in the (a, E1) space, through fractalization

of the period-3 (3T) quasiperiodic attractors to SNA and then to chaos, occur for 0.953

< a < 0.955 and 0.35 < E1 < 0.37. It is denoted as F in Fig. 2.

Moving from right to left in the middle region, one finds a torus doubling bifurcation

from a period-3 torus (3T) to a period-6 (6T) quasiperiodic attractor and then to SNA via

the Heagy-Hammel(HH) mechanism. This transition occurs in the range 0.953 < a < 0.958

and 0.38 < E1 < 0.58. It is denoted as HH in Fig. 2.

Moving higher up in the amplitude space and from right to left, we find that SNAs and

eventually chaos occur from period three-quasiperiodic attractor via type I intermittency

route as a is varied in the narrow range 0.949 < a < 0.954 and for E1 in the range 0.623

< E1 < 0.645. It is denoted as INT within a small box [Fig. 2(a)]. In Fig. 2(b), the

enlarged portion of the box in Fig. 2(a) shows the region of existence of the intermittent
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FIG. 3: Projection of the numerically simulated attractors of Eqs. (2) in the (φ−x) plane for fixed

E1 =0.44 and various values of a indicating the transition from quasiperiodic attractor to SNA

through Heagy-Hammel mechanism: (a) period-3 torus (3T) for a=0.95632, (b) period-6 torus

(6T) for a=0.95593, and (c) SNA at a=0.95592.

SNA occuring between quasiperiodic and chaotic attractors.

In this section, we have identified atleast three interesting dynamical features namely, (1)

Heagy-Hammel, (2) fractalization and (3) type I intermittent routes in the two-parameter

diagram. Now, we describe each one of the them in detail from the point of view of numrical

analysis as well as experimental identification as follows.

IV. HEAGY-HAMMEL ROUTE TO SNA

The first of these routes that we encounter is the Heagy-Hammel route in which a

period−2k torus gets wrinkled and upon collision with its unstable parent period−2k−1 torus

bifurcates into a SNA. Such a behavior has been observed in the present quasiperiodically

forced negative conductance series LCR circuit within the range of a values, 0.953< a <

0.958, and E1 values, 0.38< E1 < 0.58, while the other parameters are fixed as prescribed

earlier in section II.

A. Numerical Analysis

More specifically, let us fix the parameter E1 at E1 = 0.44, while decreasing the value

of a. For a = 0.95632, the circuit equation (2) associated with Fig. 1 is found to exhibit a
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period-3 torus attractor denoted as 3T (see Fig. 2) and the Poincaré map has three smooth

branches (Fig. 3(a)), whose phase portrait and power spectrum are shown in Figs. 4a(i) and

4a(ii). As the value of a is decreased to a = 0.95593, the attractor undergoes torus doubling

bifurcation and the corresponding period-6 quasiperiodic orbit is denoted as 6T in Fig. 2

and the Poincaré map has six smooth branches as seen in Fig. 3(b). The corresponding

phase portrait and power spectrum are shown in Figs. 4b(i) and 4b(ii). In the generic case,

the period-doubling occurs in an infinite sequence until the accumulation point is reached,

beyond which chaotic behavior appears. However, with tori, in the present case, further torus

doubling does not takes place, but the torus becomes wrinkled; that is the truncation of the

three torus doubling begins when the six strands of the 6T attractor become extremely

wrinkled. This is because the period-doubled six torus collides with its unstable parent,

and this occurs only for a few narrow selected parameter intervals, when a is decreased to

a = 0.95593 as shown in Fig.3(b). For example, when the value of a is decreased to a =

0.95592, the attractor becomes extremely wrinkled. During this transition, the strands are

seen to come closer to the unstable period 3T orbit and lose their continuities when the

strands of torus doubled orbit collide with unstable parent and ultimately result in a fractal

phenomenon as shown in Fig. 3(c) when a is decreased to a = 0.95592. The phase portrait

and power spectrum corresponding to Fig. 3(c) are shown in Figs. 4c(i) and 4c(ii). At such

a value, the attractor, Fig. 3(c), possesses a geometrically strange property but does not

exhibit sensitivity to initial conditions [the maximal Lyapunov exponent is negative as seen

in Fig. 5(a)] and so it is indeed a strange nonchaotic attractor. As a is decreased further

to a = 0.95435, the attractor has eventually a positive Lyapunov exponent and hence it

corresponds to chaotic attractor (denoted C in Fig. 2).

Now we examine the Lyapunov exponent for the transition from period-3 torus doubling

to SNA. During this transition, the largest maximal Lyapunov exponent Λ as a function of

a for a fixed E1 = 0.44 remains negative, which is shown in Fig. 5(a). Hence, the attractor

is strange but nonchaotic. We also note that there is an abrupt change in the maximal

Lyapunov exponent during the transition from period-3 torus doubled attractor to SNA and

its variance (Fig. 5(a) & 5(b)). When we examine this in a sufficiently small neighborhood of

the critical value aHH =0.95593, the transition is clearly revealed by the Lyapunov exponent

which varies smoothly in the torus region (a < aHH) while it varies irregularly in the SNA

region (a > aHH). It is also possible to identify this transition point by examining the

10



FIG. 4: Projection of the numerically simulated attractors of Eqs. (2) in the (x, y) plane for fixed

E1 =0.44 and various values of a indicating the transition from quasiperiodic attractor to SNA

through Heagy-Hammel route: (a) period-3 torus (3T) for a=0.95632, (b) period-6 torus (6T)

for a=0.95593 and (c) SNA at a=0.95592: (i) phase trajectory in the (x − y) space; (ii) power

spectrum.
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FIG. 5: Transition from three doubled torus to SNA through Heagy-Hammel route in region HH

obtained from numerical data: (a) the behavior of the maximal Lyapunov exponent (Λ) and (b)

the variance (σ) for E1 =0.44.

variance of Lyapunov exponent, as shown in Fig. 5(b) in which the fluctuation is small in

the torus region while it is large in the SNA region.

B. Experimental Confirmation

To confirm that the above results hold good in the actual experimental circuits (Fig. 1)

also, the phase trajectory is obtained experimentally by measuring the voltage v across the

capacitor C and the current iL through the inductor L in the circuit (Fig. 1) and connecting

them to the X and Y channels of an oscilloscope. Then, a live picture of the correspond-

ing power spectrum (obtained from a digital storage oscilloscope - HP 54600 series) of the

projected attractor has also been used to distinguish the different attractors. The experi-

mentally measured phase portraits and Fourier spectra shown in Figs. 6 correspond to the

transition from period-3 torus quasiperiodic attractor to SNA through the HH mechanism

as shown in Figs. 3 and 4. It has been found that the simulated results and experimentally

observed results in the phase-space as well as power spectra are qualitatively similar to each

other. In particular, in both cases, the spectra of the quasiperiodic attractors are concen-

trated at a small discrete set of frequencies while the spectra of SNA have a much richer

harmonic. To distinguish further in the characteristic aspect that the attractors depicted

in Figs. 3, 4 & 6 are quasiperiodic and strange nonchaotic, we proceed to quantify the

changes in the power spectrum. The spectral distribution (which is defined as the number
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FIG. 6: (Color online) Attractors obtained experimentally from the circuit given in Fig. 1 corre-

sponding to Figs. 4. (a) period-3 torus (3T) for R=2109 Ω, (b) period-6 torus (6T) for R=2106

Ω and (c) SNA at R=2104 Ω for fixed value of Ef1=0.22 V: (i) phase trajectory in the (v − iL)

space; (ii) power spectrum.
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FIG. 7: Spectral distribution function for the quasiperiodic attractors and SNAs created through

the Heagy-Hammel route: (a) quasiperiodic attractor, (b) strange nonchaotic attractor. Here the

numerical study is indicated by filled circles, and experimental result is denoted by filled triangles.
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FIG. 8: Distribution of finite-time Lyapunov exponents on SNAs created through the Heagy-

Hammel route: (a) quasiperiodic attractor, (b) strange nonchaotic attractor. Finite-time Lyapunov

exponents calculated from numerical data are indicated by dashed lines, and from experimental

data are denoted by solid lines.

of peaks in the Fourier amplitude spectrum larger than some value say σ) for quasiperi-

odic attractor and SNA are shown in Figs 7. In Figs. 7 the filled circles and the filled

triangles denote the spectral distribution obtained through numerical simulation and exper-

imental measurements respectively. The experimental data are recorded using a 16-bit data

acquisition system (AD12-16U(PCI)EH) at the sampling rate of 200 kHz. It is found numer-

ically as well as experimentally that the quasiperiodic attractors obey a scaling relationship

N(σ)=log
10

(1/σ) [see Fig. 7(a)] while the SNAs satisfy a scaling power law relationship

N(σ) = σ−β , 1 < β < 2. The approximate straight line in the log-log plot shown in Fig.

7(b) obeys the power-law relationship with a value of β = 1.9 for numerical study and 1.84

for experimental study.

It has also been found that a typical trajectory on a SNA actually possesses positive

Lyapunov exponents in finite time intervals, although the asymptotic exponent is negative.

As a consequence, one observes the different characteristics of SNA created through differ-

ent mechanisms by a study of the differences in the distribution of finite-time exponents

P (N, λ) [13]. For each of the cases, the distribution can be obtained by taking a long tra-

jectory and dividing it into segments of length N , from which the local Lyapunov exponent

can be calculated. In the limit of large N , this distribution will collapse to a δ function

P (N, λ) −→ (δ − λ). The deviations from and the approach to the limit can be very differ-
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ent for SNAs created through different mechanisms. We apply Wolf algorithm to determine

the Lyapunov exponents from the experimental data [34]. Fig. 8 illustrates the distributions

for P (2000, λ) which is strongly peaked about the Lyapunov exponent when the attractor

is a torus, but on the SNA the distribution picks up a tail which extends into the local

Lyapunov exponent λ >0 region. (Finite-time Lyapunov exponents calculated from numer-

ical data are indicated by dashed lines, and from experimental data are denoted by solid

lines) This tail is directly correlated with enhanced fluctuation in the Lyapunov exponent

on SNAs. On Heagy-Hammel SNA, the distribution shifts continuously to larger Lyapunov

exponents. Further the shapes for the torus regions [Fig. 8(a)] and SNA regions [Fig. 8(b)]

are very different. The results clearly confirm that the HH mechanism is operative in the

parameter regime of the present discussion.

V. FRACTALIZATION ROUTE TO SNA

The second one of the routes we have identified in the present system is the gradual

fractalization route where a torus gets increasingly wrinkled and then transits to a SNA

without interaction (in contrast to the previous case of HH) with a nearby unstable orbit

as we change the system parameter. In this route a period-3k torus becomes wrinkled and

then the wrinkled attractor gradually loses its smoothness and forms a 3k-band SNA as we

change the system parameter a for fixed value of E1. The qualitative (geometric) structure

of the attractor remains more or less the same during the process. Such a phenomenon

has been observed in the present circuit in two different regions indicated as F in Fig. 2 for

certain ranges of a in the regions of interest.

A. Numerical Analysis

Now let us consider the phase diagram (Fig. 2) where we have identified such type of frac-

talization. To exemplify the nature of this transition, we fix the parameter E1 at E1 =0.34,

and vary a in the range 0.953< a < 0.955 (Fig. 2). On decreasing the a value, oscillations

of torus (3T) in the amplitude direction starts to appear at a = 0.954406 (Fig. 9(a)) whose

phase portrait and power spectrum are shown in Figs. 10a(i) and 10a(ii). As a is decreased

further to a = 0.954351, the oscillatory behavior of the torus gradually approaches a fractal
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FIG. 9: Projection of the numerically simulated attractors of Eqs. (2) in the (φ−x) plane for fixed

E1 =0.34 and various values of a indicating the transition from quasiperiodic attractor to SNA

through fractalization route. (a) period-3 torus (3T) for a=0.954406 and (b) SNA at a=0.954351.

nature. The torus (3T) attractor gets increasingly wrinkled and transforms into a SNA

at aGF = 0.954351 as shown in Fig. 9(b). The corresponding phase portrait and power

spectrum are shown in Fig. 10b(i) and 10b(ii).

At such values, the nature of the attractor is strange (see Fig. 9(b)) eventhough the

largest Lyapunov exponent in Fig. 11(a) remains negative. It is very obvious from these

transitions that the 3 torus with three smooth branches in the Poincaré map (Fig. 9(a))

gradually losses its smoothness and ultimately approaches a fractal behavior via a SNA

(in Fig. 9(b)) before the onset of chaos as the parameter a decreases further. Such a

phenomenon is essentially a gradual fractalization of the torus as was shown by Nishikawa

and Kaneko [17] in their route to chaos via SNA. In this route, there is no collision involved

among the orbits and therefore the Lyapunov exponent and its variance change only slowly

as shown in Fig. 11(a) and 11(b) and there are no significant changes in its variance (see

Fig. 10(b)). At even lower values of ‘a’, a = 0.954, the circuit exhibits chaotic oscillations

as shown in region C of Fig. 2.

B. Experimental confirmation

To confirm the numerical results further, experimentally measured phase portraits and

Fourier spectrum results corresponding to the circuit of Fig. 1 are presented in Figs. 12
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FIG. 10: Projection of the numerically simulated attractors of Eqs. (2) in the (x, y) plane for fixed

E1 =0.34 and various values of a indicating the transition from quasiperiodic attractor to SNA

through fractalization route:(a) period-3 torus (3T) for a=0.954406 and (b) SNA at a=0.954351:

(i) phase trajectory in the (x − y) plane ; (ii) power spectrum.

which correspond to the transition from quasiperiodic attractor to SNA through gradual

fractalization shown in Figs. 9 and 10. It has been noticed that the simulated results and

experimentally measured results in the phase-space as well as power spectrum are in close

agreement. To verify further whether the attractors depicted in Figs. 10 and 12 are

quasiperiodic and strange nonchaotic attractors, we proceed to quantify the changes in the

numerically and experimentally measured power spectra. In our analysis it has been verified

that the quasiperiodic attractor obeys a scaling relationship N(σ)=log10(1/σ)[see Fig.13(a)]

while in the approximate straight line shown in the log-log plot Fig. 13(b) satisfying the

power relationship N(σ) = σ−β, with an estimated value of β=1.78 for simulation and β=1.9

for experimental measurement confirms that the attractor created through this mechanism

is indeed a strange nonchaotic attractor.

Fig. 14 illustrates the distributions for P (2000, λ) which is strongly peaked about the

Lyapunov exponent when the attractor is a torus, but on the SNA the distribution picks

17
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FIG. 11: Transition from three torus to SNA through fractalization route obtained from numerical

data: (a) the behavior of the maximal Lyapunov exponent (Λ) and (b) the variance (σ) for E1=0.34.

FIG. 12: (Color online) Attractors obtained experimentally from the circuit given in Fig.1 corre-

sponding to Figs. 10. (a) period-3 torus (3T) for R=2102 Ω and (b) SNA at R=2101 Ω for fixed

value of Ef1=0.17 V: (i) phase trajectory (v − iL); (ii) power spectrum.

up a tail which extends into the local Lyapunov exponent λ >0 region. This tail is directly

correlated with enhanced fluctuation in the Lyapunov exponent on SNAs. On the fractalized

SNA , the distribution shifts continuously to larger Lyapunov exponents, but the shape

remains the same for torus regions as well as SNA regions.
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FIG. 13: Spectral distribution function for spectra of quasiperiodic attractor and SNAs created

through gradual fractalization route: (a) quasiperiodic attractor, (b) strange nonchaotic attrac-

tor.Here numerical study is indicated by the filled circles and experimental study is denoted by the

filled triangles.
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FIG. 14: Distribution of finite-time Lyapunov exponents on SNAs created through gradual frac-

talization.: (a) quasiperiodic attractor, (b) strange nonchaotic attractor. Finite-time Lyapunov

exponents calculated from numerical data are indicated by dashed lines, and from experimental

data are denoted by solid lines.

VI. INTERMITTENT ROUTE TO SNA

Finally, the third of the routes that is predominant in this system is an intermittent

route in which the torus is eventually replaced by a strange nonchaotic attractor through an

analog of the saddle-node bifurcation. Such a phenomenon has been identified within the

range 0.623 < E1 < 0.645 for the amplitude while the parameter a is decreasing from right

to left in the narrow range 0.949 < a < 0.954 for fixed E1.
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FIG. 15: Projection of the simulated attractors of Eqs. (2) in the (φ−x) plane for fixed E1 =0.635

and various value of a: indicating the transition from quasiperiodic attractor to SNA through type

I intermittent route. (a) torus (3T) for a=0.951912 and (b) SNA at a=0.951889.
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FIG. 16: Projection of the numerically simulated attractors of Eqs. (2) for fixed E1 =0.635 and

two different values of a indicating the transition from quasiperiodic attractor to SNA through

type I intermittent route: (a) period-3 torus (3T) for a=0.951912 and (b) SNA at a=0.951889: (i)

phase trajectory in the (x − y) plane; (ii) power spectrum.
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FIG. 17: Transition from three torus to SNA through type I intermittent mechanism obtained from

numrical data: (a) the behavior of the maximal Lyapunov exponent (σ) and (b) the variance (Λ)

for E1 = 0.635.

A. Numerical Analysis

To illustrate the above transition, let us fix the parameter E1 at E1 = 0.635 while a is

decreased from a = 0.95192. Figure 15(a) shows the projection of a three-period quasiperi-

odic attractor which has three smooth branches in the Poincaré section. The corresponding

phase portrait and power spectrum are shown in Figs. 16a(i) and 16a(ii). As a is decreased

further, the attractor starts to wrinkle. On further decrease of a = 0.951889, the attractor

becomes extremely wrinkled and has several sharp bends. However, as ‘a‘ passes a thresh-

old value aI = 0.951876, an intermittent transition from the torus to SNA occurs. At the

intermittent transition, the amplitude variation loses its regularity and a burst appears in

the regular phase (quasiperiodic orbit trajectory). The duration of laminar phases in this

state is random. An example of the transition to such SNAs is shown in Fig. 15(b), the

corresponding phase portrait and power spectrum are shown in Figs. 16b(i) and 16b(ii). At

this transition, we also note that there is an abrupt change in the maximal Lyapunov expo-

nent as well as its variance corresponding to the characteristic signature of the intermittent

route [indicated in Figs. 17(a) and 17(b)] to SNA.

In the HH case, the points on the SNA are distributed over the entire region enclosed

by the wrinkled bounding torus, while in the fractalization case the points on the SNA are

distributed mainly on the boundary of the torus. Interestingly, in the present case shown in

Fig. 15(b), most of the points of the SNA remain within the wrinkled torus with sporadic
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FIG. 18: Average laminar length (< l >) vs (acritic − a) at acritic = 0.951876 obtained from

numerical data.

large deviations. The dynamics at this transition obviously involves a kind of intermittency.

Such an intermittency transition could be characterized by scaling behavior. The laminar

phase in this case is the torus while the burst phase is the nonchaotic attractor. In order to

calculate the associated scaling constant, we coevolve the trajectories for two different values

of a, namely, ac and another value of a near to ac, while keeping identical initial conditions

(xi, θi) and the same parameter value E1. As the angular coordinate θi remains identical,

the difference in xi allows one to compute the average laminar length between the bursts.

The plot of average laminar length < l > for this attractor reveals a power law relationship

of the form

< l >= (acritical − a)−α. (3)

with the estimated value of α =0.31 (see Fig. 18). This analysis also confirms that such an

attractor is associated with standard intermittent dynamics of type I described in Ref. [35,

36, 37].
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FIG. 19: (Color online) Attractors obtained experimentally from the circuit given in Fig.1 corre-

sponding to Figs. 16. (a) period-3 torus (3T) for R=2099 Ω and (b) SNA at R=2097 Ω for fixed

value of Ef1=0.318 V: (i) phase trajectory (v − iL); (ii) power spectrum.

B. Experimental Confirmation

Next, we compare the simulation results in Figs. 16 and the experimental results given

in Figs. 19. The range of parameters chosen for experimentally measured phase portraits

and Fourier spectra results given in Figs. 19 correspond to the transition from quasiperiodic

attractor to SNA through intermittent nature shown in Figs. 15 and 16. It has been found

that the simulated results and experimentally observed results in the phase-space as well

as power spectrum appears to be qualitatively similar in nature. To distinguish further

that the attractors depicted in Figs. 15, 16 and 19 are quasiperiodic and strange nonchaotic

attractors, the numerically and experimentally measured power spectra are quantified. It has

been noted that the quasiperiodic attractor obeys a scaling relationship N(σ)=log
10

(1/σ)

[see Fig. 20(a)] while the SNAs created through this mechanism satisfy a scaling power law

relationship N(σ) = σ−β, 1 < β < 2. The approximate straight line in the log-log plot

shown in Fig. 20(b) obeys the power-law relationship with a value of β = 1.86 and 1.89 for

numerical simulation and experimental measured studies respectively. Fig. 21 illustrates

the distributions for P (2000, λ) which is strongly peaked about the Lyapunov exponent when

the attractor is a torus, but on the SNA the distribution picks up a tail which extends into

the local Lyapunov exponent λ >0 region. This tail is directly correlated with enhanced
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FIG. 20: Spectral distribution function for spectrum SNAs created through type-I intermittency

route (circle denotes numerical study and triangle indicates experimental study).
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FIG. 21: Distribution of finite-time Lyapunov exponents on SNAs created through type-I inter-

mittency. (a) quasiperiodic attractor, (b) strange nonchaotic attractor. Finite-time Lyapunov

exponents calculated from numerical data are indicated by dashed lines, and from experimental

data are denoted by solid lines.

fluctuation in the Lyapunov exponent on SNAs. On the intermittent SNA route, the actual

shapes of distribution on the torus and the SNA are very different.

VII. SUMMARY AND CONCLUSION

In this paper, various transitions from the quasiperiodic attractors to the strange non-

chaotic attractors are demonstrated experimentally in a simple quasiperiodically driven elec-

tronic system. Specifically, the three prominent routes, namely Heagy-Hammel, fractaliza-
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tion and type I intermittent routes for the creation of SNAs are demarcated the different

regions in the (a−E1) parameter space. First, we have used simulation results to show the

bifurcation process of this circuit from the quasiperiodic attractors to the strange nonchaotic

attractors. Then we have experimentally observed the existence of the strange nonchaotic

attractors as a part of the whole bifurcation process as predicted by the simulation. The

experimental observations, numerical simulations and characteristic analysis show that the

simple dissipative quasiperiodically forced negative conductance series LCR circuit does

indeed have strange nonchaotic behaviors. To distinguish among the three mechanisms

through which SNAs are born, we have examined the manner in which the maximal Lya-

punov exponent and its variance change as a function of the parameters. In addition, we

have also examined the distribution of local Lyapunov exponents and found that they take

on different characteristics for different mechanisms.

Given the ubiquity of SNA dynamics in the quasiperiodically driven systems, one of the

main issues with respect to the observation of SNAs is that this dynamical behaviour occurs

in a very narrow range of values of the control parameters. While identifying these attractors

from numerical analysis, one may wonder whether they occur due to numerical artifacts and

whether they may get smeared out if the inherent noise or parameter mismatch is included.

For this purpose, it is important to verify the underlying phenomena experimentally to be

sure about the existence of the type of transitions to SNAs discussed in this paper. It is

here the construction of electronic circuits like the one discussed in this manuscript gains

physical relevance as an elegant means of experimental verification.
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