30,305 research outputs found

    Quantum Description for the Decay of NSNS Brane-Antibrane Systems

    Full text link
    The stringy description for the instabilities in the RRRR charged DpDˉpD_{p}-\bar{D}_{p} pairs is now well understood in terms of the open string tachyon condensation. The quantum interpretation presumably via the stringy description for the instabilities in the NSNSNSNS-charged F1F1ˉF1-\bar{F1} and NS5NS5ˉNS5-\bar{NS5} pairs in IIA/IIB theories, however, has not been established yet. This would be partly because of the absence (for the F1F1ˉF1-\bar{F1} case) or our relatively poor understanding (for the NS5NS5ˉNS5-\bar{NS5} case) of their worldvolume (gauge theory) dynamics. In the present work, using the well-known quantum description for instabilities in the RRRR-charged DpDˉpD_{p}-\bar{D}_{p} systems and in the M-theory brane-antibrane systems and invoking appropriate string dualities, the stringy nature of the instabilities in the NSNSNSNS-charged F1F1ˉF1-\bar{F1} and NS5NS5ˉNS5-\bar{NS5} systems has been uncovered. For the annihilations to string vacua, the quantum, stringy interpretations are simple extensions of Sen's conjecture for those in RRRR-charged brane-antibrane systems.Comment: 22 pages, 4 eps figures, Latex, comments and references adde

    Hardcore bosons on checkerboard lattices near half filling: geometric frustration, vanishing charge order and fractional phase

    Full text link
    We study a spinless hardcore boson model on checkerboard lattices by Green function Monte Carlo method. At half filling, the ground state energy is obtained up to 28×2828\times 28 lattice and extrapolated to infinite size, the staggered pseudospin magnetization is found to vanish in the thermodynamic limit. Thus the (π,π)(\pi,\pi) charge order is absent in this system. Away from half filling, two defects induced by each hole (particle) may carry fractional charge (±e/2\pm e/2). For one hole case, we study how the defect-defect correlation changes with t/Jt/J, which is the ratio between the hopping integral and cyclic exchange, equals to V/2tV/2t when VtV\gg t. Moreover, we argue that these fractional defects may propagate independently when the concentration of holes (or defects) is large enough

    Corrigendum to "Knot Floer homology detects fibred knots"

    Full text link
    We correct a mistake on the citation of JSJ theory in \cite{Ni}. Some arguments in \cite{Ni} are also slightly modified accordingly.Comment: 3 page

    Leptophilic Dark Matter with ZZ' interactions

    Get PDF
    We consider a scenario where dark matter (DM) interacts exclusively with Standard Model (SM) leptons at tree level. Due to the absence of tree-level couplings to quarks, the constraints on leptophilic dark matter arising from direct detection and hadron collider experiments are weaker than those for a generic WIMP. We study a simple model in which interactions of DM with SM leptons are mediated by a leptophilic ZZ' boson, and determine constraints on this scenario arising from relic density, direct detection, and other experiments. We then determine current LHC limits and project the future discovery reach. We show that, despite the absence of direct interactions with quarks, this scenario can be strongly constrained.Comment: 12 pages, 15 figure

    Effective Low-Energy Model for f-Electron Delocalization

    Full text link
    We consider a Periodic Anderson Model (PAM) with a momentum-dependent inter-band hybridization that is strongly suppressed near the Fermi level. Under these conditions, we reduce the PAM to an effective low-energy Hamiltonian, HeffH_{\rm eff}, by expanding in the small parameter V0/tV_0/t ( V0V_0 is the maximum inter-band hybridization amplitude and tt is the hopping integral of the broad band). The resulting model consists of a t-J f-band coupled via the Kondo exchange to the electrons in the broad band. HeffH_{\rm eff} allows for studying the f-electron delocalization transition. The result is a doping-induced Mott transition for the f-electron delocalization, which we demonstrate by density-matrix renormalization group (DMRG) calculations

    Fermi gas in harmonic oscillator potentials

    Full text link
    Assuming the validity of grand canonical statistics, we study the properties of a spin-polarized Fermi gas in harmonic traps. Universal forms of Fermi temperature TFT_F, internal energy UU and the specific heat per particle of the trapped Fermi gas are calculated as a {\it function} of particle number, and the results compared with those of infinite number particles.Comment: 8 pages, 1 figure, LATE

    UV-finite scalar field theory with unitarity

    Full text link
    In this paper we show how to define the UV completion of a scalar field theory such that it is both UV-finite and perturbatively unitary. In the UV completed theory, the propagator is an infinite sum of ordinary propagators. To eliminate the UV divergences, we choose the coefficients and masses in the propagator to satisfy certain algebraic relations, and define the infinite sums involved in Feynman diagram calculation by analytic continuation. Unitarity can be proved relatively easily by Cutkosky's rules. The theory is equivalent to infinitely many particles with specific masses and interactions. We take the ϕ4\phi^4 theory as an example and demonstrate our idea through explicit Feynman diagram computation.Comment: 14 pages, references adde

    The momentum distribution of J/psi in B decays

    Full text link
    The discrepancy between theory and data in the momentum distribution of slow J/psi in B decays has been several times addressed as a puzzle. Using the most recent results on exclusive B decays into J/psi and heavy kaons or exotic mesons and reconsidering the non-relativistic-QCD calculation of the color octet fragmentation component, we show that an improvement in the comparison between data and theory can be obtained. There is still room for a better fit to data and this may imply that new exotic mesons of the XYZ kind have yet to be discovered.Comment: 4 pages, 2 figures, 2 tables. To appear in Physical Review

    Controlling two-species Mott-insulator phses in an optical lattice to form an array of dipolar molecules

    Full text link
    We consider the transfer of a two-species Bose-Einstein condensate into an optical lattice with a density such that that a Mott-insulator state with one atom per species per lattice site is obtained in the deep lattice regime. Depending on collision parameters the result could be either a `mixed' or a `separated' Mott-insulator phase. Such a `mixed' two-species insulator could then be photo-associated into an array of dipolar molecules suitable for quantum computation or the formation of a dipolar molecular condensate. For the case of a 87^{87}Rb-41^{41}K two-species BEC, however, the large inter-species scattering length makes obtaining the desired `mixed' Mott insulator phase difficult. To overcome this difficulty we investigate the effect of varying the lattice frequency on the mean-field interaction and find a favorable parameter regime under which a lattice of dipolar molecules could be generated

    Competing Ground States of a Peierls-Hubbard Nanotube

    Get PDF
    Motivated by iodo platinum complexes assembled within a quadratic-prism lattice, [Pt(C2_2H8_8N2_2)(C10_{10}H8_8N2_2)I]4_4(NO3_3)8_8, we investigate the ground-state properties of a Peierls-Hubbard four-legged tube. Making a group-theoretical analysis, we systematically reveal a variety of valence arrangements, including half-metallic charge-density-wave states. Quantum and thermal phase competition is numerically demonstrated with particular emphasis on doping-induced successive insulator-to-metal transitions with conductivity increasing stepwise.Comment: 6 pages, 4 figures. to be published in Europhys. Lett. 87 (2009) 1700
    corecore