3,998 research outputs found

    Magnetic interactions in transition metal doped ZnO : An abinitio study

    Full text link
    We calculate the nature of magnetic interactions in transition-metal doped ZnO using the local spin density approximation and LSDA+\textit{U} method of density functional theory. We investigate the following four cases: (i) single transition metal ion types (Cr, Mn, Fe, Co, Ni and Cu) substituted at Zn sites, (ii) substitutional magnetic transition metal ions combined with additional Cu and Li dopants, (iii) substitutional magnetic transition metal ions combined with oxygen vacancies and (iv) pairs of magnetic ion types (Co and Fe, Co and Mn, etc.). Extensive convergence tests indicate that the calculated magnetic ground state is unusually sensitive to the k-point mesh and energy cut-off, the details of the geometry optimizations and the choice of the exchange-correlation functional. We find that ferromagnetic coupling is sometimes favorable for single type substitutional transition metal ions within the local spin density approximation. However, the nature of magnetic interactions changes when correlations on the transition-metal ion are treated within the more realistic LSDA + \textit{U} method, often disfavoring the ferromagnetic state. The magnetic configuration is sensitive to the detailed arrangement of the ions and the amount of lattice relaxation, except in the case of oxygen vacancies when an antiferromagnetic state is always favored.Comment: 11 pages, 17 figure

    Non-monotonic temperature dependent transport in graphene grown by Chemical Vapor Deposition

    Full text link
    Temperature-dependent resistivity of graphene grown by chemical vapor deposition (CVD) is investigated. We observe in low mobility CVD graphene device a strong insulating behavior at low temperatures and a metallic behavior at high temperatures manifesting a non-monotonic in the temperature dependent resistivity.This feature is strongly affected by carrier density modulation. To understand this anomalous temperature dependence, we introduce thermal activation of charge carriers in electron-hole puddles induced by randomly distributed charged impurities. Observed temperature evolution of resistivity is then understood from the competition among thermal activation of charge carriers, temperature-dependent screening and phonon scattering effects. Our results imply that the transport property of transferred CVD-grown graphene is strongly influenced by the details of the environmentComment: 7 pages, 3 figure

    Spontaneous Symmetry Breaking of Population between Two Dynamic Attractors in a Driven Atomic Trap: Ising-class Phase Transition

    Full text link
    We have observed spontaneous symmetry breaking of atomic populations in the dynamic phase-space double-potential system, which is produced in the parametrically driven magneto-optical trap of atoms. We find that the system exhibits similar characteristics of the Ising-class phase transition and the critical value of the control parameter, which is the total atomic number, can be calculated. In particular, the collective effect of the laser shadow becomes dominant at large atomic number, which is responsible for the population asymmetry of the dynamic two-state system. This study may be useful for investigation of dynamic phase transition and temporal behaviour of critical phenomena.Comment: 4 pages, 4 figure

    Methods for reduced cost and lower sample prep volumes for genetic analysis applications

    Get PDF
    As the cost of NGS has decreased, the library preparation cost has become a larger portion of the total expenditure. This is especially true for high-throughput applications, such as single-cell analysis. Therefore, there is a need to develop methods that can not only study the transcriptomes of single cells, but can also feasibly analyze large numbers of single cells. Miniaturizing the sample preparation volume provides the opportunity for significant cost savings. Using TTP Labtech’s mosquito liquid handlers, reagent and sample quantities can be scaled down to picogram values

    Stage-specific control of oligodendrocyte survival and morphogenesis by TDP-43

    Get PDF
    Generation of oligodendrocytes in the adult brain enables both adaptive changes in neural circuits and regeneration of myelin sheaths destroyed by injury, disease, and normal aging. This transformation of oligodendrocyte precursor cells (OPCs) into myelinating oligodendrocytes requires processing of distinct mRNAs at different stages of cell maturation. Although mislocal- ization and aggregation of the RNA-binding protein, TDP-43, occur in both neurons and glia in neurodegenerative diseases, the consequences of TDP-43 loss within different stages of the oligo- dendrocyte lineage are not well understood. By performing stage-specific genetic inactivation of Tardbp in vivo, we show that oligodendrocyte lineage cells are differentially sensitive to loss of TDP- 43. While OPCs depend on TDP-43 for survival, with conditional deletion resulting in cascading cell loss followed by rapid regeneration to restore their density, oligodendrocytes become less sensitive to TDP-43 depletion as they mature. Deletion of TDP-43 early in the maturation process led to even- tual oligodendrocyte degeneration, seizures, and premature lethality, while oligodendrocytes that experienced late deletion survived and mice exhibited a normal lifespan. At both stages, TDP-43- deficient oligodendrocytes formed fewer and thinner myelin sheaths and extended new processes that inappropriately wrapped neuronal somata and blood vessels. Transcriptional analysis revealed that in the absence of TDP-43, key proteins involved in oligodendrocyte maturation and myelination were misspliced, leading to aberrant incorporation of cryptic exons. Inducible deletion of TDP-43 from oligodendrocytes in the adult central nervous system (CNS) induced the same progressive morphological changes and mice acquired profound hindlimb weakness, suggesting that loss of TDP-43 function in oligodendrocytes may contribute to neuronal dysfunction in neurodegenerative disease

    Dirty Black Holes and Hairy Black Holes

    Get PDF
    An approach based on considerations of the non-classical energy momentum tensor outside the event horizon of a black hole provides additional physical insight into the nature of discrete quantum hair on black holes and its effect on black hole temperature. Our analysis both extends previous work based on the Euclidean action techniques, and corrects an omission in that work. We also raise several issues related to the effects of instantons on black hole thermodynamics and the relation between these effects and results in two dimensional quantum field theory.Comment: 13 pages, Latex, submitted to Physical Review Letter

    Critical flow prediction by system codes – Recent analyses made within the FONESYS network

    Get PDF
    A benchmark activity on Two-Phase Critical Flow (TPCF) prediction was conducted in the framework of the Forum & Network of System Thermal-Hydraulics Nuclear Reactor Thermal-Hydraulics (FONESYS). FONESYS is a network among code developers who share the common objective to strengthen current technology. The aim of the FONESYS Network is to highlight the capabilities and the robustness as well as the limitations of current SYSTH codes to predict the main phenomena during transient scenarios in nuclear reactors for safety issues. Six separate effect test facilities, more than 90 tests, both in steady and transient conditions, were considered for the activity. Moreover, two ideal tests were designed for code to code comparison in clearly defined conditions. Overall eight System Thermal-Hydraulic (SYS-TH) codes were adopted, mostly by the developers themselves, ensuring the minimization of the user effect. Results from selected tests were also compared against Delayed Equilibrium Model, not yet implemented in industrial version of SYS-TH codes. Generally, the results of the benchmark show an improvement of the capability of SYS-TH codes to predict TPCF in the last three decades. However, predicting break flowrate remains a major source of uncertainty in accidental transient simulations of Water-Cooled Nuclear Reactors (WCNR). A set of possible actions is proposed to go beyond the current limitations of choked flow models. More detailed guidelines for using 0-D choked flow models is possible by using the experience gained by the benchmark results as well as all available validation results. Progress in understanding and 1-D modelling of flashing and choked flow might be achieved by a deeper physical analysis leading to more mechanistic models based on specific flow regime maps for high speed flow. Also the use of advanced 3-D numerical tools may help to understand and predict the complex 3-D geometrical effect

    Freshwater Ecosystems: From Models to Applications

    Get PDF
    Freshwater ecosystems—lakes and streams—are being endangered by agricultural, urban, and industrial pollution; hydraulic engineering; and overexploitation, which threaten their capacity to provide important services (recreation and supply of food and clean water, among others). Ecological modeling may be employed to estimate impacts and analyze mitigation strategies. Toy models are easy to construct, but applying them to real-world problems is often challenging. Here, we show in two case studies how the connection from model to application can be made. The first study analyzes whether and how the impact of climatic change on a mostly recreational fishery in an Alpine lake can be mitigated, while the second looks at restoring biodiversity after cleaning up pollution in a Korean river system, using aquatic insects, which play an essential functional role in aquatic food-webs and are very sensitive to water quality, as indicators of ecosystem health. These studies highlight the ability of process-based eco-evolutionary models to generate testable hypotheses and contribute solutions to real-world problems

    Synthesis and characterization of iodovanadinite using PdI2, an iodine source for the immobilisation of radioiodine

    Get PDF
    The synthesis of a palladium-containing iodovanadinite derivative, hypothetically “PdPb9(VO4)6I2”, was attempted using PdI2 as a source of iodine in searching for a novel waste form for radioiodine. Stoichiometric amounts of Pb3(VO4)2 and PdI2 were batched and reacted at elevated temperatures in sealed vessels. Batched material was also subjected to high-energy ball-milling (HEBM) in order to reduce reaction time and the potential for iodine volatilization during subsequent reaction at 200–500 °C. The resulting products were characterized using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray analysis, IR spectroscopy, thermal analysis and Pd K XANES. Results showed that PdI2 can function as a sacrificial iodine source for the formation of iodovanadinite, prototypically Pb10(VO4)6I2, however, the incorporation of Pd into this phase was not definitively observed. The sacrificial reaction mechanism involved the decomposition of PdI2 to Pd metal and nascent I2, with the latter incorporated into the iodovanadinite Pb10(VO4)6I2 phase. In comparison to processing using standard solid state reaction techniques, the use of HEBM prior to high temperature reaction generates a more homogeneous end-product with better iodine retention for this system. Overall, the key novelty and importance of this work is in demonstrating a method for direct immobilisation of undissolved PdI2 from nuclear fuel reprocessing, in a composite wasteform in which I-129 is immobilised within a durable iodovandinite ceramic, encapsulating Pd metal

    Mechanical properties of ZnO epitaxial layers grown on a- and c-axis sapphire

    No full text
    The mechanical properties of zinc oxide epitaxial layers grown on a- and c-axis sapphire have been studied by spherical nanoindentation and cross-sectional transmission electron microscopy. As-grown threading dislocations, which are characteristic of epitaxialmaterial, combined with the presence of the much harder, underlying substrate are found to have a significant effect on the mechanical behavior of ZnO epilayers as compared to bulk material. Epilayer material is found to be significantly harder than its bulk counterpart. For a-axis epilayers, analysis of load–unload data yields a hardness of 6.6±1.2GPa, and 5.75±0.8GPa for c-axis layers. We attribute this increased hardness to strain compensation via the presence of as-grown defects. These defects inhibit the slip mechanism responsible for relative softness of bulk single crystals. The absence of pop-in events from analyzed continuous-load nanoindentation data is further evidence for strain compensation by native defects within the epilayers. Large variations in the spread of collected data are indicative of inhomegenity in the epilayers.The University of Sydney, for constructive comments and support. The work at UF is partially supported by the AFOSR under Grant Nos. F49620-03-1-0370 sT.S.d and NSF DMR 0400416
    corecore