24,319 research outputs found

    Ab Initio Simulation of the Nodal Surfaces of Heisenberg Antiferromagnets

    Full text link
    The spin-half Heisenberg antiferromagnet (HAF) on the square and triangular lattices is studied using the coupled cluster method (CCM) technique of quantum many-body theory. The phase relations between different expansion coefficients of the ground-state wave function in an Ising basis for the square lattice HAF is exactly known via the Marshall-Peierls sign rule, although no equivalent sign rule has yet been obtained for the triangular lattice HAF. Here the CCM is used to give accurate estimates for the Ising-expansion coefficients for these systems, and CCM results are noted to be fully consistent with the Marshall-Peierls sign rule for the square lattice case. For the triangular lattice HAF, a heuristic rule is presented which fits our CCM results for the Ising-expansion coefficients of states which correspond to two-body excitations with respect to the reference state. It is also seen that Ising-expansion coefficients which describe localised, mm-body excitations with respect to the reference state are found to be highly converged, and from this result we infer that the nodal surface of the triangular lattice HAF is being accurately modeled. Using these results, we are able to make suggestions regarding possible extensions of existing quantum Monte Carlo simulations for the triangular lattice HAF.Comment: 24 pages, Latex, 3 postscript figure

    Red Blood Cells from Individuals with Abdominal Obesity or Metabolic Abnormalities Exhibit Less Deformability upon Entering a Constriction.

    Get PDF
    Abdominal obesity and metabolic syndrome (MS) are multifactorial conditions associated with increased risk of cardiovascular disease and type II diabetes mellitus. Previous work has demonstrated that the hemorheological profile is altered in patients with abdominal obesity and MS, as evidenced for example by increased whole blood viscosity. To date, however, no studies have examined red blood cell (RBC) deformability of blood from individuals with obesity or metabolic abnormalities under typical physiological flow conditions. In this study, we pumped RBCs through a constriction in a microfluidic device and used high speed video to visualize and track the mechanical behavior of ~8,000 RBCs obtained from either healthy individuals (n = 5) or obese participants with metabolic abnormalities (OMA) (n = 4). We demonstrate that the OMA+ cells stretched on average about 25% less than the healthy controls. Furthermore, we examined the effects of ingesting a high-fat meal on RBC mechanical dynamics, and found that the postprandial period has only a weak effect on the stretching dynamics exhibited by OMA+ cells. The results suggest that chronic rigidification of RBCs plays a key role in the increased blood pressure and increased whole blood viscosity observed in OMA individuals and was independent of an acute response triggered by consumption of a high-fat meal

    On virialization with dark energy

    Full text link
    We review the inclusion of dark energy into the formalism of spherical collapse, and the virialization of a two-component system, made of matter and dark energy. We compare two approaches in previous studies. The first assumes that only the matter component virializes, e.g. as in the case of a classic cosmological constant. The second approach allows the full system to virialize as a whole. We show that the two approaches give fundamentally different results for the final state of the system. This might be a signature discriminating between the classic cosmological constant which cannot virialize and a dynamical dark energy mimicking a cosmological constant. This signature is independent of the measured value of the equation of state. An additional issue which we address is energy non-conservation of the system, which originates from the homogeneity assumption for the dark energy. We propose a way to take this energy loss into account.Comment: 15 pages, 5 figures. Accepted for publication in JCA

    X(1812) in Quarkonia-Glueball-Hybrid Mixing Scheme

    Full text link
    Recently a JPC=0++J^{PC}=0^{++} (X(1812)) state with a mass near the threshold of ω\omega and ϕ\phi has been observed by the BES collaboration in J/ψ→γωϕJ/\psi \to \gamma \omega \phi decay. It has been suggested that it is a IG=0+I^G = 0^+ state. If it is true, this state fits in a mixing scheme based on quarkonia, glueball and hybrid (QGH) very nicely where five physical states are predicted. Together with the known f0(1370)f_0(1370), f0(1500)f_0(1500), f0(1710)f_0(1710), and f0(1790)f_0(1790) states, X(1812) completes the five members in this family. Using known experimental data on these particles we determine the ranges of the mixing parameters and predict decay properties for X(1812). We also discuss some features which may be able to distinguish between four-quark and hybrid mixing schemes.Comment: 15 pages, 2 figures, 3 table

    High-Order Coupled Cluster Method Calculations for the Ground- and Excited-State Properties of the Spin-Half XXZ Model

    Full text link
    In this article, we present new results of high-order coupled cluster method (CCM) calculations, based on a N\'eel model state with spins aligned in the zz-direction, for both the ground- and excited-state properties of the spin-half {\it XXZ} model on the linear chain, the square lattice, and the simple cubic lattice. In particular, the high-order CCM formalism is extended to treat the excited states of lattice quantum spin systems for the first time. Completely new results for the excitation energy gap of the spin-half {\it XXZ} model for these lattices are thus determined. These high-order calculations are based on a localised approximation scheme called the LSUBmm scheme in which we retain all kk-body correlations defined on all possible locales of mm adjacent lattice sites (k≤mk \le m). The ``raw'' CCM LSUBmm results are seen to provide very good results for the ground-state energy, sublattice magnetisation, and the value of the lowest-lying excitation energy for each of these systems. However, in order to obtain even better results, two types of extrapolation scheme of the LSUBmm results to the limit m→∞m \to \infty (i.e., the exact solution in the thermodynamic limit) are presented. The extrapolated results provide extremely accurate results for the ground- and excited-state properties of these systems across a wide range of values of the anisotropy parameter.Comment: 31 Pages, 5 Figure

    Membrane in M5-branes Background

    Full text link
    In this paper, we investigate the properties of a membrane in the M5-brane background. Through solving the classical equations of motion of the membrane, we can understand the classical dynamics of the membrane in this background.Comment: 15 pages, typos correcte

    Deterministic Quantum Key Distribution Using Gaussian-Modulated Squeezed States

    Get PDF
    A continuous variable ping-pong scheme, which is utilized to generate deterministically private key, is proposed. The proposed scheme is implemented physically by using Gaussian-modulated squeezed states. The deterministic way, i.e., no basis reconciliation between two parties, leads a two-times efficiency comparing to the standard quantum key distribution schemes. Especially, the separate control mode does not need in the proposed scheme so that it is simpler and more available than previous ping-pong schemes. The attacker may be detected easily through the fidelity of the transmitted signal, and may not be successful in the beam splitter attack strategy.Comment: 7 pages, 4figure

    Field induced density wave in the heavy fermion compound CeRhIn5

    Full text link
    Metals containing Ce often show strong electron correlations due to the proximity of the 4f state to the Fermi energy, leading to strong coupling with the conduction electrons. This coupling typically induces a variety of competing ground states, including heavy-fermion metals, magnetism and unconventional superconductivity. The d-wave superconductivity in CeTMIn5 (TM=Co, Rh, Ir) has attracted significant interest due to its qualitative similarity to the cuprate high-Tc superconductors. Here, we show evidence for a field induced phase-transition to a state akin to a density-wave (DW) in the heavy fermion CeRhIn5, existing in proximity to its unconventional superconductivity. The DW state is signaled by a hysteretic anomaly in the in-plane resistivity accompanied by the appearance of non-linear electrical transport at high magnetic fields (>27T), which are the distinctive characteristics of density-wave states. The unusually large hysteresis enables us to directly investigate the Fermi surface of a supercooled electronic system and to clearly associate a Fermi surface reconstruction with the transition. Key to our observation is the fabrication of single crystal microstructures, which are found to be highly sensitive to "subtle" phase transitions involving only small portions of the Fermi surface. Such subtle order might be a common feature among correlated electron systems, and its clear observation adds a new perspective on the similarly subtle CDW state in the cuprates.Comment: Accepted in Nature Communication

    Local unitary versus local Clifford equivalence of stabilizer and graph states

    Get PDF
    The equivalence of stabilizer states under local transformations is of fundamental interest in understanding properties and uses of entanglement. Two stabilizer states are equivalent under the usual stochastic local operations and classical communication criterion if and only if they are equivalent under local unitary (LU) operations. More surprisingly, under certain conditions, two LU equivalent stabilizer states are also equivalent under local Clifford (LC) operations, as was shown by Van den Nest et al. [Phys. Rev. \textbf{A71}, 062323]. Here, we broaden the class of stabilizer states for which LU equivalence implies LC equivalence (LU⇔LCLU\Leftrightarrow LC) to include all stabilizer states represented by graphs with neither cycles of length 3 nor 4. To compare our result with Van den Nest et al.'s, we show that any stabilizer state of distance δ=2\delta=2 is beyond their criterion. We then further prove that LU⇔LCLU\Leftrightarrow LC holds for a more general class of stabilizer states of δ=2\delta=2. We also explicitly construct graphs representing δ>2\delta>2 stabilizer states which are beyond their criterion: we identify all 58 graphs with up to 11 vertices and construct graphs with 2m−12^m-1 (m≥4m\geq 4) vertices using quantum error correcting codes which have non-Clifford transversal gates.Comment: Revised version according to referee's comments. To appear in Physical Review
    • …
    corecore