33,805 research outputs found

    Classical Trajectory Perspective on Double Ionization Dynamics of Diatomic Molecules Irradiated by Ultrashort Intense Laser Pulses

    Full text link
    In the present paper, we develop a semiclassical quasi-static model accounting for molecular double ionization in an intense laser pulse. With this model, we achieve insight into the dynamics of two highly-correlated valence electrons under the combined influence of a two-center Coulomb potential and an intense laser field, and reveal the significant influence of molecular alignment on the ratio of double over single ion yield. Analysis on the classical trajectories unveils sub-cycle dynamics of the molecular double ionization. Many interesting features, such as the accumulation of emitted electrons in the first and third quadrants of parallel momentum plane, the regular pattern of correlated momentum with respect to the time delay between closest collision and ionization moment, are revealed and successfully explained by back analyzing the classical trajectories. Quantitative agreement with experimental data over a wide range of laser intensities from tunneling to over-the-barrier regime is presented.Comment: 8 pages, 9 figure

    Complex Dynamics of Correlated Electrons in Molecular Double Ionization by an Ultrashort Intense Laser Pulse

    Full text link
    With a semiclassical quasi-static model we achieve an insight into the complex dynamics of two correlated electrons under the combined influence of a two-center Coulomb potential and an intense laser field. The model calculation is able to reproduce experimental data of nitrogen molecules for a wide range of laser intensities from tunnelling to over-the-barrier regime, and predicts a significant alignment effect on the ratio of double over single ion yield. The classical trajectory analysis allows to unveil sub-cycle molecular double ionization dynamics.Comment: 5 pages, 5 figures. to appear in Phys. Rev. Lett.(2007

    Progress in strain monitoring of tapestries

    No full text
    This paper reports interdisciplinary research between conservators and engineers designed to enhance the long-term conservation of tapestries (tapestry-weave hangings) on longterm display. The aim is to monitor, measure and document the strain experienced by different areas of a tapestry while it is hanging on display. Initial research has established that damage can be identified in the early stages of its inception, i.e., before it is visible to the naked eye. The paper also reports initial results of strain data visualisation that allows curators and conservators to examine how strain develops, thereby facilitating predictions about the changes in the form or condition of the tapestry. Strain data visualisation also allows the strain process to be recorded, thereby facilitating the effective documentation of display methods and conservation interventions. The paper reports the use of point measurements (using silica optical fibre sensors) and full-field monitoring (using 3-D photogrammetry with digital image correlation (DIC))

    Variational semi-blind sparse deconvolution with orthogonal kernel bases and its application to MRFM

    Get PDF
    We present a variational Bayesian method of joint image reconstruction and point spread function (PSF) estimation when the PSF of the imaging device is only partially known. To solve this semi-blind deconvolution problem, prior distributions are specified for the PSF and the 3D image. Joint image reconstruction and PSF estimation is then performed within a Bayesian framework, using a variational algorithm to estimate the posterior distribution. The image prior distribution imposes an explicit atomic measure that corresponds to image sparsity. Importantly, the proposed Bayesian deconvolution algorithm does not require hand tuning. Simulation results clearly demonstrate that the semi-blind deconvolution algorithm compares favorably with previous Markov chain Monte Carlo (MCMC) version of myopic sparse reconstruction. It significantly outperforms mismatched non-blind algorithms that rely on the assumption of the perfect knowledge of the PSF. The algorithm is illustrated on real data from magnetic resonance force microscopy (MRFM)

    Strain monitoring of tapestries: results of a three-year research project

    Get PDF
    The outcomes of an interdisciplinary research project between conservators and engineers investigating the strain experienced by different areas of a tapestry are described. Two techniques were used: full-field monitoring using digital image correlation (DIC) and point measurements using optical fibre sensors. Results showed that it is possible to quantify the global strain across a discrete area of a tapestry using DIC; optical fibre and other sensors were used to validate the DIC. Strain maps created by the DIC depict areas of high and low strain and can be overlaid on images of the tapestry, creating a useful visual tool for conservators, custodians and the general public. DIC identifies areas of high strain not obvious to the naked eye. The equipment can be used in situ in a historic house. In addition the work demonstrated the close relationship between relative humidity and strain

    Modulation of the high mobility two-dimensional electrons in Si/SiGe using atomic-layer-deposited gate dielectric

    Full text link
    Metal-oxide-semiconductor field-effect transistors (MOSFET's) using atomic-layer-deposited (ALD) Al2_2O3_3 as the gate dielectric are fabricated on the Si/Si1x_{1-x}Gex_x heterostructures. The low-temperature carrier density of a two-dimensional electron system (2DES) in the strained Si quantum well can be controllably tuned from 2.5×1011\times10^{11}cm2^{-2} to 4.5×1011\times10^{11}cm2^{-2}, virtually without any gate leakage current. Magnetotransport data show the homogeneous depletion of 2DES under gate biases. The characteristic of vertical modulation using ALD dielectric is shown to be better than that using Schottky barrier or the SiO2_2 dielectric formed by plasma-enhanced chemical-vapor-deposition(PECVD).Comment: 3 pages Revtex4, 4 figure

    Extreme non-linear response of ultra-narrow optical transitions in cavity QED for laser stabilization

    Full text link
    We explore the potential of direct spectroscopy of ultra-narrow optical transitions of atoms localized in an optical cavity. In contrast to stabilization against a reference cavity, which is the approach currently used for the most highly stabilized lasers, stabilization against an atomic transition does not suffer from Brownian thermal noise. Spectroscopy of ultra-narrow optical transitions in a cavity operates in a very highly saturated regime in which non-linear effects such as bistability play an important role. From the universal behavior of the Jaynes-Cummings model with dissipation, we derive the fundamental limits for laser stabilization using direct spectroscopy of ultra-narrow atomic lines. We find that with current lattice clock experiments, laser linewidths of about 1 mHz can be achieved in principle, and the ultimate limitations of this technique are at the 1 μ\mu Hz level.Comment: 5 pages, 4 figure

    Momentum Distribution of Near-Zero-Energy Photoelectrons in the Strong-Field Tunneling Ionization in the Long Wavelength Limit

    Full text link
    We investigate the ionization dynamics of Argon atoms irradiated by an ultrashort intense laser of a wavelength up to 3100 nm, addressing the momentum distribution of the photoelectrons with near-zero-energy. We find a surprising accumulation in the momentum distribution corresponding to meV energy and a \textquotedblleft V"-like structure at the slightly larger transverse momenta. Semiclassical simulations indicate the crucial role of the Coulomb attraction between the escaping electron and the remaining ion at extremely large distance. Tracing back classical trajectories, we find the tunneling electrons born in a certain window of the field phase and transverse velocity are responsible for the striking accumulation. Our theoretical results are consistent with recent meV-resolved high-precision measurements.Comment: 5 pages, 4 figure

    Hofstadter-type energy spectra in lateral superlattices defined by periodic magnetic and electrostatic fields

    Full text link
    We calculate the energy spectrum of an electron moving in a two-dimensional lattice which is defined by an electric potential and an applied perpendicular magnetic field modulated by a periodic surface magnetization. The spatial direction of this magnetization introduces complex phases into the Fourier coefficients of the magnetic field. We investigate the effect of the relative phases between electric and magnetic modulation on band width and internal structure of the Landau levels.Comment: 5 LaTeX pages with one gif figure to appear in Phys. Rev.
    corecore