558 research outputs found
Event related potential correlates of movement production and the regulation and monitoring of actions
Humans have the ability to interact with the environment by producing voluntary
movements and responding to relevant external events. Since human performance is
rarely perfect, an important task of the human information processing system also
concerns the monitoring of actions (Rabbitt, 1967). In this way departures from required
performance are detected and adjustments can be made to eliminate, or reduce, errors.
This thesis describes experiments on the planning, execution and evaluation of
voluntary movement. To this end, brain activity in the electro-encephalogram (EEG)
accompanying both hand and eye movements are examined
Encouraging survival rates in patients with acute myocardial infarction treated with an intra-aortic balloon pump
Objective To evaluate a 30-day and long-term outcome of patients with acute myocardial infarction (AMI) treated with intra-aortic balloon pump (IABP) counterpulsation and to identify predictors of a 30-day and long-term all-cause mortality. Methods Retrospective cohort study of 437 consecutive AMI patients treated with IABP between January 1990 and June 2004. A Cox proportional hazards model was used to identify predictors of a 30-day and long-term all-cause mortality. Results Mean age of the study population was 61±11 years, 80% of the patients were male, and 68% had cardiogenic shock. Survival until IABP removal after successful haemodynamic stabilisation was 78% (n=341). Cumulative 30-day survival was 68%. Median follow-up was 2.9 years (range, 6 months to 15 years). In patients who survived until IABP removal, cumulative 1-, 5-, and 10-year survival was 75%
Regional Differences in the Sensitivity of MEG for Interictal Spikes in Epilepsy
MEG interictal spikes as recorded in epilepsy patients are a reflection of intracranial interictal activity. This study investigates the relationship between the estimated sources of MEG spikes and the location, distribution and size of interictal spikes in the invasive ECoG of a group of 38 epilepsy patients that are monitored for pre-surgical evaluation. An amplitude/surface area measure is defined to quantify and rank ECoG spikes. It is found that all MEG spikes are associated with an ECoG spike that is among the three highest ranked in a patient. Among the different brain regions considered, the fronto-orbital, inter-hemispheric, tempero-lateral and central regions stand out. In an accompanying simulation study it is shown that for hypothesized extended sources of larger sizes, as suggested by the data, source location, orientation and curvature can partly explain the observed sensitivity of MEG for interictal spikes
Quark-hadron duality in a relativistic, confining model
Quark-hadron duality is an interesting and potentially very useful
phenomenon, as it relates the properly averaged hadronic data to a perturbative
QCD result in some kinematic regions. While duality is well established
experimentally, our current theoretical understanding is still incomplete. We
employ a simple model to qualitatively reproduce all the features of
Bloom-Gilman duality as seen in electron scattering. In particular, we address
the role of relativity, give an explicit analytic proof of the equality of the
hadronic and partonic scaling curves, and show how the transition from coherent
to incoherent scattering takes place.Comment: This paper is dedicated to the memory of our collaborator Nathan
Isgur. (34 pages, 13 figures
Qweak: A Precision Measurement of the Proton's Weak Charge
The Qweak experiment at Jefferson Lab aims to make a 4% measurement of the
parity-violating asymmetry in elastic scattering at very low of a
longitudinally polarized electron beam on a proton target. The experiment will
measure the weak charge of the proton, and thus the weak mixing angle at low
energy scale, providing a precision test of the Standard Model. Since the value
of the weak mixing angle is approximately 1/4, the weak charge of the proton
is suppressed in the Standard Model, making it
especially sensitive to the value of the mixing angle and also to possible new
physics. The experiment is approved to run at JLab, and the construction plan
calls for the hardware to be ready to install in Hall C in 2007. The
theoretical context of the experiment and the status of its design are
discussed.Comment: 5 pages, 2 figures, LaTeX2e, to be published in CIPANP 2003
proceeding
Bacillus subtilis MreB Orthologs Self-Organize into Filamentous Structures underneath the Cell Membrane in a Heterologous Cell System
Actin-like bacterial cytoskeletal element MreB has been shown to be essential for the maintenance of rod cell shape in many bacteria. MreB forms rapidly remodelling helical filaments underneath the cell membrane in Bacillus subtilis and in other bacterial cells, and co-localizes with its two paralogs, Mbl and MreBH. We show that MreB localizes as dynamic bundles of filaments underneath the cell membrane in Drosophila S2 Schneider cells, which become highly stable when the ATPase motif in MreB is modified. In agreement with ATP-dependent filament formation, the depletion of ATP in the cells lead to rapid dissociation of MreB filaments. Extended induction of MreB resulted in the formation of membrane protrusions, showing that like actin, MreB can exert force against the cell membrane. Mbl also formed membrane associated filaments, while MreBH formed filaments within the cytosol. When co-expressed, MreB, Mbl and MreBH built up mixed filaments underneath the cell membrane. Membrane protein RodZ localized to endosomes in S2 cells, but localized to the cell membrane when co-expressed with Mbl, showing that bacterial MreB/Mbl structures can recruit a protein to the cell membrane. Thus, MreB paralogs form a self-organizing and dynamic filamentous scaffold underneath the membrane that is able to recruit other proteins to the cell surface
Amyloid-driven disruption of default mode network connectivity in cognitively healthy individuals
Cortical accumulation of amyloid beta is one of the first events of Alzheimer's disease pathophysiology, and has been suggested to follow a consistent spatiotemporal ordering, starting in the posterior cingulate cortex, precuneus and medio-orbitofrontal cortex. These regions overlap with those of the default mode network, a brain network also involved in memory functions. Aberrant default mode network functional connectivity and higher network sparsity have been reported in prodromal and clinical Alzheimer's disease. We investigated the association between amyloid burden and default mode network connectivity in the preclinical stage of Alzheimer's disease and its association with longitudinal memory decline. We included 173 participants, in which amyloid burden was assessed both in CSF by the amyloid beta 42/40 ratio, capturing the soluble part of amyloid pathology, and in dynamic PET scans calculating the non-displaceable binding potential in early-stage regions. The default mode network was identified with resting-state functional MRI. Then, we calculated functional connectivity in the default mode network, derived from independent component analysis, and eigenvector centrality, a graph measure recursively defining important nodes on the base of their connection with other important nodes. Memory was tested at baseline, 2- and 4-year follow-up. We demonstrated that higher amyloid burden as measured by both CSF amyloid beta 42/40 ratio and non-displaceable binding potential in the posterior cingulate cortex was associated with lower functional connectivity in the default mode network. The association between amyloid burden (CSF and non-displaceable binding potential in the posterior cingulate cortex) and aberrant default mode network connectivity was confirmed at the voxel level with both functional connectivity and eigenvector centrality measures, and it was driven by voxel clusters localized in the precuneus, cingulate, angular and left middle temporal gyri. Moreover, we demonstrated that functional connectivity in the default mode network predicts longitudinal memory decline synergistically with regional amyloid burden, as measured by non-displaceable binding potential in the posterior cingulate cortex. Taken together, these results suggest that early amyloid beta deposition is associated with aberrant default mode network connectivity in cognitively healthy individuals and that default mode network connectivity markers can be used to identify subjects at risk of memory decline
White matter microstructure disruption in early stage amyloid pathology.
Introduction: Amyloid beta (Aβ) accumulation is the first pathological hallmark of Alzheimer's disease (AD), and it is associated with altered white matter (WM) microstructure. We aimed to investigate this relationship at a regional level in a cognitively unimpaired cohort. Methods: We included 179 individuals from the European Medical Information Framework for AD (EMIF‐AD) preclinAD study, who underwent diffusion magnetic resonance (MR) to determine tract‐level fractional anisotropy (FA); mean, radial, and axial diffusivity (MD/RD/AxD); and dynamic [18F]flutemetamol) positron emission tomography (PET) imaging to assess amyloid burden. Results: Regression analyses showed a non‐linear relationship between regional amyloid burden and WM microstructure. Low amyloid burden was associated with increased FA and decreased MD/RD/AxD, followed by decreased FA and increased MD/RD/AxD upon higher amyloid burden. The strongest association was observed between amyloid burden in the precuneus and body of the corpus callosum (CC) FA and diffusivity (MD/RD) measures. In addition, amyloid burden in the anterior cingulate cortex strongly related to AxD and RD measures in the genu CC. Discussion: Early amyloid deposition is associated with changes in WM microstructure. The non‐linear relationship might reflect multiple stages of axonal damage
Determination of the pion charge form factor for Q^2=0.60-1.60 GeV^2
The data analysis for the reaction H(e,e' pi^+)n, which was used to determine
values for the charged pion form factor Fpi for values of Q^2=0.6-1.6 GeV^2,
has been repeated with careful inspection of all steps and special attention to
systematic uncertainties. Also the method used to extract Fpi from the measured
longitudinal cross section was critically reconsidered. Final values for the
separated longitudinal and transverse cross sections and the extracted values
of Fpi are presented.Comment: 11 pages, 6 figure
Spin-Momentum Correlations in Quasi-Elastic Electron Scattering from Deuterium
We report on a measurement of spin-momentum correlations in quasi-elastic
scattering of longitudinally polarized electrons with an energy of 720 MeV from
vector-polarized deuterium. The spin correlation parameter was
measured for the reaction for missing
momenta up to 350 MeV/ at a four-momentum transfer squared of 0.21
(GeV/c). The data give detailed information about the spin structure of the
deuteron, and are in good agreement with the predictions of microscopic
calculations based on realistic nucleon-nucleon potentials and including
various spin-dependent reaction mechanism effects. The experiment demonstrates
in a most direct manner the effects of the D-state in the deuteron ground-state
wave function and shows the importance of isobar configurations for this
reaction.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Lett. for publicatio
- …