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Abstract

Introduction: Amyloid beta (Aβ) accumulation is the first pathological hallmark of

Alzheimer’s disease (AD), and it is associated with altered white matter (WM)

microstructure. We aimed to investigate this relationship at a regional level in a cog-

nitively unimpaired cohort.

Methods:We included179 individuals from theEuropeanMedical InformationFrame-

work for AD (EMIF-AD) preclinAD study, who underwent diffusion magnetic reso-

nance (MR) to determine tract-level fractional anisotropy (FA); mean, radial, and axial

diffusivity (MD/RD/AxD); and dynamic [18F]flutemetamol) positron emission tomogra-

phy (PET) imaging to assess amyloid burden.

Results: Regression analyses showed a non-linear relationship between regional

amyloid burden and WM microstructure. Low amyloid burden was associated with

increased FA and decreased MD/RD/AxD, followed by decreased FA and increased

MD/RD/AxD upon higher amyloid burden. The strongest association was observed

between amyloid burden in the precuneus and body of the corpus callosum (CC) FA

and diffusivity (MD/RD) measures. In addition, amyloid burden in the anterior cingu-

late cortex strongly related to AxD and RDmeasures in the genu CC.

Discussion: Early amyloid deposition is associated with changes in WM microstruc-

ture. The non-linear relationship might reflect multiple stages of axonal damage.

KEYWORDS

Amyloid beta (Aβ), diffusion tensor imaging (DTI), magnetic resonance imaging (MRI), positron
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1 INTRODUCTION

Amyloid beta (Aβ) plaque accumulation is a pathological hallmark of

Alzheimer’s disease (AD), and has been associated with alterations in
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whitematter (WM)microstructure,1,2 with the first being quantified in

vivo by positron emission tomography (PET) and the latter measured

on magnetic resonance imaging (MRI) using diffusion tensor imaging

(DTI). However, reports regarding the relationship between amyloid
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accumulation and disruption in WM microstructure show conflicting

results.

PreclinicalADsubjects havebeen reported to show lossofWMtract

integrity, that is, decrease of fractional anisotropy (FA) and increase

of mean diffusivity (MD), compared to amyloid-negative controls.3–5

Of interest, the tracts with the most pronouncedWM alterations (cor-

pus callosum, fornix, superior longitudinal fasciculi, and cingulum)3,6,7

are anatomically connected to early amyloid-affected regions,8–11 sug-

gesting that WM alterations may be driven by amyloid deposition.

However, the opposite relationship has also been reported, with higher

FA in thehighamyloid groupcompared to theamyloid-negative group.7

More recentwork could reconcile previous conflicting reports because

a non-linear relationship between global measures of amyloid burden

andDTI has been observed.3,12

These inconsistencies could also be due to the challenges of detect-

ing early amyloid pathology in the preclinical stages of AD.11 Because

amyloid burden is often low or focal in this population, global assess-

ment and dichotomization of standardized uptake value ratios (SUVRs)

are likely suboptimal and indeed have been demonstrated to miss the

earliest signs of Aβ pathology.13,14 Full quantification and regional

investigations could provide more sensitive Aβ measurements in this

population,9,15,16 thereby better enabling the assessment of the rela-

tionship between amyloid burden andWMmicrostructure.

This study aimed to assess the relation between early stage amy-

loid burden and WM-tract microstructure alterations in cognitively

unimpaired subjects using global and regional DTI measures and quan-

titative global and regional amyloid burden derived from dynamic

[18F]flutemetamol PET imaging.

2 METHODS

2.1 Cohort

Thedata used in this study originate from the InnovativeMedicines Ini-

tiative (IMI) European Medical Information Framework for AD (EMIF-

AD) project (http://www.emif.eu/). The overall aim of the EMIF-AD

project is todiscover andvalidatediagnosticmarkers, prognosticmark-

ers, and risk factors for AD in non-demented subjects.

2.2 Subjects

A total of 199 subjects from the EMIF PreclinAD cohort were included

at the VU University Medical Center, after being referred by The

Netherlands Twin Register.17 Inclusion criteria were age ≥60 years

and normal cognition according to a delayed recall score of >−1.5

standard deviation (SD) of demographically adjusted normative data

on the Consortium to Establish a Registry for Alzheimer’s Disease

(CERAD) 10-word list, a Telephone Interview for Cognitive Status

modified (TICS-m) score of 23 or higher, a 15-item Geriatric Depres-

sion Scale (GDS) score of <11, and a Clinical Dementia Rating (CDR)

scale score of zero. Exclusion criteria were the presence of any phys-

RESEARCH INCONTEXT

1. Systematic review: Literature was reviewed using tradi-

tional sources (eg, PubMed). Although a loss ofwhitemat-

ter (WM) integrity has been clearly described in clinical

Alzheimer’s disease (AD), recent work suggests a more

complex relationship between amyloid burden and WM

microstructural changes in its preclinical stages. Themost

relevant and latest papers are cited in this work.

2. Interpretation: Our findings in a cognitively unimpaired

population support the association between early amy-

loid burden and disrupted WM microstructure as mea-

sured by diffusion tensor imaging (DTI) analysis. The

apparentnon-linear relationshipbetween these twomea-

sures might reflect initial amyloid-associated compen-

satorymechanisms of theWM, followed by axonal degen-

eration.

3. Future directions: This work highlights the importance

of complementary multi-modal imaging approaches in

the context of preclinical AD. Understanding the rela-

tionship between amyloid accumulation and subsequent

brain changes could improve risk-profiling efforts, and

possibly support targeted inclusion for secondarypreven-

tion trials. Longitudinal validation of these findings is nec-

essary.

ical, neurological, or psychiatric condition that might interfere with

cognitive performance.18 The Medical Ethics Review Committee of

the VU University Medical Center performed approval of the study

in Amsterdam. Research was performed according to the principles

of the Declaration of Helsinki and in accordance with the Medical

Research InvolvingHumanSubjectsAct and codes on ‘good use’ of clin-

ical data and biological samples as developed by the Dutch Federation

of Medical Scientific Societies. All participants gave written informed

consent.

DynamicPETacquisitionorquantification failed in four and five sub-

jects, respectively. Seven subjects were excluded due to the detection

of space-occupying lesionswith the characteristics ofmeningioma, one

due to incorrect field of view, and one due to failed DTI quantification,

resulting in the final inclusion of 179 subjects.

2.3 Image acquisition and processing

2.3.1 PET image acquisition and processing

Dynamic scanning was performed on a Philips Ingenuity TF PET-MRI

camera (Philips Healthcare, Cleveland, USA) using the dual-time win-

dow acquisition protocol,19 with 30-minute scans acquired immedi-

ately after manual injection (191 ± 20 MBq) of [18F]flutemetamol.
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After a 60-minute break, a second scan of 20 minutes was acquired

(90 to 110 minutes post injection). In addition, a dedicated magnetic

resonance sequence (attenuation MR) was acquired prior to each PET

scan for attenuation correction (AC). The first emission scans were

reconstructed in 18 frames with increasing time length, by applying

the line-of-respons row action maximum likelihood algorithm (LOR-

RAMLA) reconstruction algorithm for the brain. The second scan was

reconstructed by four frameswith 300 seconds each. Imageswere pre-

processed with Vinci Software version 2.56 (http://vinci.sf.mpg.de/) to

combine the two PET scans into single multi-frame images. Further-

more, the multimodality setting of Vinci was used for co-registration

of an individual’s T1-weighted MRI sequence to the dynamic scans.

Cerebellar gray matter was chosen as the reference tissue. Non-

displaceable Binding Potential (BPND) values were calculated by using

the receptor parametric mapping (RPM) implementation of the Simpli-

fied Reference TissueModel (SRTM)20 in PPET software.19,21 For anal-

yses, distributionvolumeratio (DVR)was calculatedas a linear function

of receptor availability for radioligand (BPND + 1). The co-registered

T1-weighted MR images were warped into Montreal Neurological

Institute (MNI) space using Statistical Parametric Mapping (SPM) 12

(https://www.fil.ion.ucl.ac.uk/spm/). Subsequently, the subject-specific

conversionmatrix was used to warp the corresponding PET image into

MNI.

Amyloid positivity was visually assessed by three readers who com-

pleted the training provided by GE Healthcare.22 For the visual read,

image maximum intensity was scaled to 90% of the pons signal using

rainbow color scaling, and transverse, sagittal, and coronal views were

displayed using the software packageVinci 2.56 and assessed together

with a T1-weighted MR scan to assist reading in the presence of

atrophy in the visual assessment. Images were rated as either positive

(binding in one or more cortical brain region or striatum unilaterally)

or negative (predominantlyWMuptake).11

The Desikan-Killiany (DK) atlas23 was used to extract global and

regional cortical DVR values normalized to cerebellar gray matter.

Global amyloid burden consisted of the volume-weighted average of

27 cortical regions.24 A cut-off for amyloid positivity was determined

using Gaussian mixture modeling, taking the mean and two standard

deviations of the left (normal) curve (ie, DVR ≥1.15). Early accumulat-

ing regions were selected based on previous work in the amyloid stag-

ing field,8,9,24–26 which included the anterior cingulate cortex (ACC),

posterior cingulate cortex (PCC), isthmus cingulate cortex (ICC), pre-

cuneus (PC), insula, and lateral orbitofrontal cortex (lOFC).

2.3.2 MR image acquisition and processing

Whole-brain scans were obtained using a single 3T MRI scanner

(Philips Ingenuity Time-of-Flight PET-MR scanner) with an eight-

channel head coil. Isotropic structural three-dimensional (3D)

T1-weighted images were acquired using a sagittal turbo field echo

sequence (1.00 mm3 isotropic voxels, repetition time = 7.9 ms, echo

time = 4.5 ms, and flip angle = 8◦), and 3D sagittal fluid-attenuated

inversion recovery (FLAIR) sequences (1.12 mm3 isotropic voxels,

repetition time = 4800 ms, echo time = 279 ms, and inversion

time = 1650 ms) were acquired for the assessment of white matter

hyperintensities (WMHs). All MRI scans were visually assessed by an

experienced neuroradiologist for incidental findings.

3D-T1 and FLAIR sequences were used to automatically seg-

ment WMHs using a Gaussian mixture model (GMM), accounting

for expected (healthy) and outlier observations, which allows for a

quantitative measure of WMH volume. A full description of the used

framework can be found in Sudre et al. (2015).27 It is notable that

WMH volumes were extracted from voxels considered as abnormal

using comparisons to the characteristics of healthy WM (Figure S1). A

complete description ofWMHpathology in this cohort can be found in

a previous publicaton by our group (ten Kate et al., 2018).28

2.3.3 DTI image acquisition and processing

Images were acquiredwith a Philips 3T Achieva scanner (EPI sequence

repetition time (TR) = 7517 ms, echo time (TE) = 92 ms). Diffusion

gradients were collected over 32 non-collinear directions (b = 1000

s/mm2). One additional scan per subject with no diffusion weighting

(b= 0 s/mm2) was acquired. The field of viewwas 256× 256× 112mm

with an acquisitionmatrix of 128×128mm.Gapless, 2-mm-thick slices

were taken. Voxels measured 2× 2× 2mm.

Diffusion images were preprocessed using the Functional Mag-

netic Resonance Imaging of the Brain (FMRIB) Diffusion Toolbox from

FMRIB’s Software Library (FSL).29 Images were first skull-stripped

using the brain extraction tool (BET) and then corrected for eddy-

current distortions with standard settings. The diffusion tensor model

was then fitted to independent voxels for fractional anisotropy (FA)

and mean diffusivity (MD) measurements. Independent regional mea-

surements of FA and MD data were performed with tract-based spa-

tial statistics (TBSS).30 TBSSwas used to select themost typical subject

(smallest amount of averagewarping) from thewhole cohort as the tar-

get image, which was affine-aligned (warped) to MNI standard space.

Subsequently, these transformations were applied to all subjects’ FA

images, transforming them to MNI standard space. Finally, TBSS was

used to project all subjects’ FA data onto a mean FA tract skeleton,30

whichwas then repeated forMD, radial diffusivity (RD), and axial diffu-

sivity (AxD).

Averaged values within the skeleton were used to reflect global

DTI metrics of FA, MD, RD, and AxD. In addition, regions of interest

(ROIs) as defined by the John Hopkins University (JHU) ICBM-DTI-

81 white-matter atlas (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/ Atlases)31

were applied to the skeletonized DTI data, which is suggested to be

preferred when aiming to identify subtle changes in the corpus cal-

losum (CC) and tracts neighboring the ventricles.32 Eight tracts were

selected based on previous literature.3,6,7 These included the cingulum

of the cingulate gyrus (CG); parahippocampal cingulum (PaCi); supe-

rior longitudinal fasciculus (SLF); the genu, body, and splenium of the

corpus callosum (CC); fornix; and uncinated fasciculus (UF). Projection

fibers were excluded becausewewere interested primarily in intracra-

nial connections.
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MD represents the diffusion average, but it provides no informa-

tion about the direction in which diffusion is increasing or decreas-

ing. Therefore, MD measures were complemented with measures of

axial and radial diffusivity, which do take the direction of diffusion into

account, and used to determine which measure was most sensitive to

amyloid-drivenWMdisruption.

2.4 Statistical analyses

Statistical analyses were performed with Statistical Package for the

Social Sciences (SPSS) version 26. Generalized estimating equations

(GEEs) with an exchangeable working correlation matrix and a robust

estimator was applied to all multiple regression models to correct for

twin status.33 Dependent and independent variables were standard-

ized prior to the regression analyses in order to obtain standardized

betas. Effect sizes were obtained: R2 values ≤0.010 were considered

small, 0.090 medium, and ≥0.250 a large effect size. Significance was

set at a P-value< .05 (Bonferroni correction P= .006).

2.4.1 Assessments of covariates

Regression analyses were performed between global DVR, FA, and

MD, correcting for age, sex, and WMH volume. Subsequent analyses

were corrected for all covariates showing a significant relationship

with either DVR or DTI measures (Figure S2).

2.4.2 Assessment of amyloid and DTI
relationships

First, differences in global FA andMD for amyloid− and amyloid+ sub-

jectswere investigated. Then, regression analyses between continuous

measures of global and regional amyloid burden and global and tract-

specific FA andMDmeasureswere performed. Significant associations

between regional amyloid and MD were further investigated for AxD

and RD alterations.

Both linear and quadratic fits were applied to the regression mod-

els and the best fit was selected using the Quasi-likelihood under the

Independence Model Criterion (QIC) parameter, which is the equiv-

alent of the Akaike criterion used in GEE analysis.34 The lowest QIC

value was selected; the reported ΔQIC indicates the difference in QIC

value betweenmodels.

3 RESULTS

Demographic characteristics of the cohort are shown inTable1.Results

that survived Bonferroni correction are shown in Table 2. Full results

can be found in Table S1 and S2.

TABLE 1 Demographics of the cohort

Clinical Characteristics (N= 179)

Sex (% female) 102 (57%)

Age 70.1 (7.14)

MMSE score 29.0 (1.15)

WMH 5.41E03 (7.33E03)

APOE ε4 positivity (%) 74 (41.3%)

Global amyloid DVR 1.03 (0.12)

Global amyloid positivity (%)a 25 (14%)

aBased visual assessment of the parametric amyloidPET images.11 Continu-

ous measures are shown as mean (SD) unless otherwise specified. Abbrevi-

ations: MMSE, Mini Mental State Examination; WMH, white matter hyper-

intensity; DVR, distribution volume ratio.

3.1 Global amyloid burden and DTI measures

No differences were observed between visually amyloid− or amyloid+

subjects in global white matter (WM) fractional anisotropy (FA)

(P= .12) ormean diffusivity (MD) (P= .862) or between subjects classi-

fied as amyloid− or amyloid+ based on their global quantitative amy-

loid burden (cut-off DVR >1.15) in global WM FA (P = .09) or MD

(P= .88).When a continuousmeasure of global amyloid burden is used,

a marginal association with global FA, superior longitudinal fasciculus

(SLF) FA, but not with globalMDwas observed.

3.2 Regional amyloid burden and DTI measures

Significant associations between FA in the body of the corpus callosum

(CC) and amyloid burden in the anterior cingulate cortex (ACC), pos-

terior cingulate cortex (PCC), insula, and most strongly the precuneus,

were observed. For the precuneus, also a strong association with FA

in the splenium of the CC was shown. Finally, amyloid burden in the

insula also related to FA in the cingulum. For all associations, an initial

higher FA upon an increase in amyloid burden, followed by an inflec-

tion point and subsequently lower FA for further increases in amyloid

burden was apparent. Indeed, the quadratic model was preferred for

all associations according to the quasi information criterion (QIC), as

it better described the non-linear trend in the data. The associations

with amyloid burden in the precuneus survived Bonferroni-correction

(Table 2 and Figure 1).

Next, we tested the associations between MD and amyloid burden.

MD and FA showed opposite trends as a function of amyloid burden,

as expected in the presence of axonal degeneration. More specifically,

significant associations were found betweenMD in the genu of the CC

and amyloid burden in ACC, PCC, ICC, and precuneus. The latter also

strongly related to MD in the body of the CC and survived Bonferroni

correction. Again, most associations comprised a negative linear and

positive quadratic amyloid component, also resulting in a preference

for the quadratic model according to QIC (Table 2 and Figure 1).
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TABLE 2 Significant associations between amyloid burden andDTI measures

Model parameters

Linear Quadratic Model fit

Predictor Dependent β P Β p ΔQIC R2

Fractional anisotropy

DVR precuneus Body CC .36 <.001 −.10 .001 8.2 .15

SpleniumCC .26 .002 −.10 .001 6.0 .08

DVR insula Cingulum .23 .005 −.07 .012 3.0 .04

Mean diffusivity

DVR precuneus Body CC −.34 <.001 .12 .001 4.5 .10

Axial diffusivity

DVR anterior cingulate cortex Genu CC −.21 .004 .08 <.001 5.7 .06

Radial diffusivity

DVR anterior cingulate cortex Genu CC −.28 .005 .07 .003 2.4 .03

DVR precuneus Body CC −.32 <.001 .09 .004 2.8 .09

GEE results that survived Bonferroni correction are shown adjusted for age, sex, andwhitematter hyperintensity (WMH). All models included random effect

for twin status. Standardized betas are shown, calculatedwith z-scores. For all analyses, a quadraticmodel fit was preferred by the quasi information criterion

(QIC).

Abbreviations: DVR= distribution volume ratio, CC= corpus callosum.
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F IGURE 1 Association between amyloid burden and FA/MD. Scatterplots show the associations between standardized amyloid burden
(x-axis) and standardized DTI measures (y-axis), corrected for age, sex, andWMH load. Left panels: A significant non-linear relationship was
observed between global DVR and globalWMFA and no significant relationship was observed between global DVR and globalWMMD.Middle
panels: A non-linear relationship at trend level was observed between precuneus DVR and FA/MD in the body of the CC. Right panels: A non-linear
association was observed between FA/MDof the body CC and amyloid burden in the precuneus, which survived Bonferroni correction

3.3 Axial and radial diffusivity DTI measures

Finally, significant associations between regional amyloid burden and

tract-level MD were further analyzed for underlying axial diffusivity

(AxD) and radial diffusivity (RD) patterns. Both RD and AxD in the

genu of the CC strongly related to amyloid burden in the ACC. In addi-

tion, the relationship between amyloid burden in the precuneus and

diffusivity in the body of the CC was fully explained by RD. All these
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associations survived Bonferroni correction (Table 2) and AxD/RD

exhibited a quadratic relationship with amyloid burden similar to that

ofMD (Figure 2).

4 DISCUSSION

The current study suggests a non-linear relationship between regional

amyloid burden and white matter (WM) microstructural measures

in a cognitively unimpaired elderly population. An initial increase

in amyloid burden corresponded to higher FA and lower diffusivity

measures (MD/AxD/RD), followed, respectively, by a maximum for

FA and a minimum for diffusivity measures, and subsequently lower

FA and higher diffusivity measures for further increases in amyloid

burden. This association was particularly evident between amyloid

burden in the precuneus and FA/MD measures in the body of the

corpus callosum (CC) and between amyloid burden in the anterior

cingulate cortex (ACC) and AxD and RD measures of the genu of the

CC.

A non-linear association between amyloid burden and WM tract

microstructure has been described previously.3,12 Although the study

ofWolf et al. observed this relationship only at the global level, a recent

study fromDonget al. showed regional diffusion changes depending on

the amount of global amyloid burden, most prominently in the genu of

theCC.However, within this study, the continuous amyloid burdenwas

reduced to a dichotomous categorization. By including primarily early

amyloid accumulators and using amyloid PET quantification as a con-

tinuousmeasure in this work, our results strongly support associations

between regional amyloid-β (Aβ) deposition and regional disruptions in
WMmicrostructure. More specifically, amyloid burden in the anterior

cingulate cortex strongly related to AxD and RDmeasures of the genu

of the CC, whereas amyloid burden in the precuneus related to MD

measures in the body and FA measures in both the body and splenium

of the CC. In addition, amyloid burden in the insula significantly related

to FA measures of the cingulum. It is notable that these associations

betweenamyloid burdenandDTImeasures showed statistically signifi-

cant dependence bothwith quadratic and linear fits. Thus, the behavior

of DTImetrics as a function of increasing amyloid burden suggests that

amyloid deposition might induce WM changes already in (very) early

accumulating subjects. This observation is also supportedby the recent

work of Caballero et al. (2020), who showed that Aβ deposition is asso-
ciated withWMalterations throughout the adult lifespan.35

Histological studies provide insight into the possible underlying pro-

cesses of these in vivo observations. A recent study showed increased

oligodendrocyte proliferation and remyelination of axons in early

AD.36 This could effectively hamper diffusion along the axons and thus

result in altered DTI measures of diffusivity in subjects with early amy-

loid accumulation. In addition,Winklewski et al. (2018) reported acute

axonal damage due to axonal swelling and fragmentation associated

with an decrease inAxD, followedbymicroglial clearance ofmembrane

fragments and decreased axonal density associatedwith an increase in

AxD.37 In accordance, initial RD decreases have been linked to axonal

swelling during acute injury,38 whereas subsequent RD increases are

linked to demyelination.37 In line with these histological observations,

our results show an initial decrease in AxD and RD, followed by an

increase in bothmetrics. Such non-linear patternsmight entailmultiple

stages of axonal damage, which in light of recent literature might be

explained as initial oligodendrocyte proliferation and axonal swelling

upon low amyloid burden, followed by actual axonal degeneration

only becoming apparent at a higher amyloid burden.39 This also could

explainwhy initial increases inWMFAwere found not to be associated

with cognitive decline in early AD, whereas decreases in WM FA

were.3,5

Non-linear associations between emerging amyloid pathology and

imaging biomarkers might be able to capture the earliest response to

amyloid deposition, arguably the first step of AD pathophysiological

cascade.40 In line with our work, a biphasic model of gray matter MD

changes in asymptomatic subjects has been proposed.41 In addition,

a trend toward larger hippocampal volume has been reported in sub-

jects with intermediate amyloid burden compared to amyloid-negative

subjects, whereas a loss of hippocampal volume was seen in clear

amyloid-positive subjects.12 Finally, recent work showed that elec-
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troencephalography (EEG) patterns aremodulated differently depend-

ing on the degree of amyloid burden, also in a non-linear fashion.42

Combining such imagingmodalities showing biphasic response to amy-

loid deposition could further improve our understanding of the devel-

opment of AD in its preclinical stages. Literature suggests that WM

tract microstructure measures specifically of the CC12,43 seem to be

promising early stage AD biomarkers in addition to amyloid pathol-

ogy, and might support the identification of more accurate subject-

specific disease trajectories. This could in turn improve risk-profiling

efforts of preclinical AD subjects, and possibly support targeted inclu-

sion for secondary prevention trials focusing on secondary preven-

tion. Longitudinal studies are necessary to further validate this cross-

sectional work and to investigate the value of combining regional

WM integrity and amyloid burden measures in predicting cognitive

decline.

Some methodological considerations of the current work should

be addressed. First, we did not investigate associations between

late amyloid accumulation regions and WM tracts, possibly missing

other regional associations. In addition, the use of bilateral and tract-

wise WM ROIs might overlook local effects. Voxel-wise association

studies could avoid these limitations, and future work should inves-

tigate the possible added value of these approaches. Tract-level data

might also have suffered from partial-volume effects (PVEs), that is,

contamination of diffusion signals by cerebrospinal fluid. Thin WM

bundles are especially vulnerable to PVE, resulting in underestimation

of DTI metrics alterations in the smaller tracts. PVE might therefore

explain the limited amount of associations in the thin cingulumbundles,

while strong results were found in the larger body CC.44 In addition,

although the use of the skeletonized data for ROI extraction was

chosen for its improved ability to detect subtle changes in the CC and

tracts neighboring the ventricles, it might have been suboptimal for

other WM tracts located more in the deep WM.32 Finally, the number

of amyloid-positive subjects in this cohort is relatively low compared

to previous literature (14% vs. ≈20%),45 given the average age of

the study participants. This is probably because our apolipoprotein

E (APOE) ε4 carriers, which are at the highest risk of accumulating

amyloid, are mostly in the 60- to 70-year age range (data not shown)

and less likely to have high global amyloid burden, but rather are on the

disease trajectory toward amyloid positivity.46 Although continuous

measures of amyloid burden were used, the low number of globally

positive subjects may have limited the power to observe associations

between regions known to be involved later in the amyloid accumu-

lation process and more associative tracts like the SLF, considering

the trend level associations already observed between global amyloid

burden and SLF FA in this work.

5 CONCLUSION

Regional amyloid burden is associated with disruption of the WM

microstructure in cognitively unimpaired subjects. This association

was driven mostly by amyloid burden in the precuneus and it could

be most robustly measured in the body of the CC, where a non-

linear biphasic relationship between DTI metrics and amyloid burden

was apparent. Our results might reflect initial amyloid-associated

compensatory mechanisms of the WM, followed by axonal degen-

eration patterns in the earliest stages of AD. Taken together, DTI

measures of the body of the CC are promising early AD biomarkers

and could, together with amyloid burden, support risk-profiling efforts

in preclinical AD subjects.
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