28 research outputs found

    Variability in school closure decisions in response to 2009 H1N1: a qualitative systems improvement analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>School closure was employed as a non-pharmaceutical intervention against pandemic 2009 H1N1, particularly during the first wave. More than 700 schools in the United States were closed. However, closure decisions reflected significant variation in rationales, decision triggers, and authority for closure. This variability presents the opportunity for improved efficiency and decision-making.</p> <p>Methods</p> <p>We identified media reports relating to school closure as a response to 2009 H1N1 by monitoring high-profile sources and searching Lexis-Nexis and Google news alerts, and reviewed reports for key themes. News stories were supplemented by observing conference calls and meetings with health department and school officials, and by discussions with decision-makers and community members.</p> <p>Results</p> <p>There was significant variation in the stated goal of closure decision, including limiting community spread of the virus, protecting particularly vulnerable students, and responding to staff shortages or student absenteeism. Because the goal of closure is relevant to its timing, nature, and duration, unclear rationales for closure can challenge its effectiveness. There was also significant variation in the decision-making authority to close schools in different jurisdictions, which, in some instances, was reflected in open disagreement between school and public health officials. Finally, decision-makers did not appear to expect the level of scientific uncertainty encountered early in the pandemic, and they often expressed significant frustration over changing CDC guidance.</p> <p>Conclusions</p> <p>The use of school closure as a public health response to epidemic disease can be improved by ensuring that officials clarify the goals of closure and tailor closure decisions to those goals. Additionally, authority to close schools should be clarified in advance, and decision-makers should expect to encounter uncertainty disease emergencies unfold and plan accordingly.</p

    Structure of tumor suppressor p53 and its intrinsically disordered N-terminal transactivation domain

    No full text
    Proteins with intrinsically disordered domains are implicated in a vast range of biological processes, especially in cell signaling and regulation. Having solved the quaternary structure of the folded domains in the tumor suppressor p53 by a multidisciplinary approach, we have now determined the average ensemble structure of the intrinsically disordered N-terminal transactivation domain (TAD) by using residual dipolar couplings (RDCs) from NMR spectroscopy and small-angle x-ray scattering (SAXS). Remarkably, not only were we able to measure RDCs of the isolated TAD, but we were also able to do so for the TAD in both the full-length tetrameric p53 protein and in its complex with a specific DNA response element. We determined the orientation of the TAD ensemble relative to the core domain, found that the TAD was stiffer in the proline-rich region (residues 64–92), which has a tendency to adopt a polyproline II (PPII) structure, and projected the TAD away from the core. We located the TAD in SAXS experiments on a complex between tetrameric p53 and four Taz2 domains that bind tightly to the TAD (residues 1–57) and acted as “reporters.” The p53-Taz2 complex was an extended cross-shaped structure. The quality of the SAXS data enabled us to model the disordered termini and the folded domains in the complex with DNA. The core domains enveloped the response element in the center of the molecule, with the Taz2-bound TADs projecting outward from the core
    corecore