261 research outputs found

    Multi-collector Inductively Coupled Plasma Mass Spectrometry: New Developments and Basic Concepts for High-precision Measurements of Mass-dependent Isotope Signatures

    Get PDF
    Due to the development of multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) around 25 years ago, the isotopes of a large range of elements (masses from Li to U) are now analyzed with high enough precision and accuracy to resolve subtle natural variations. These so-called 'non-traditional stable isotope systems' opened many new research avenues and are applied at an increasing rate in research and industry projects and in a broad range of different disciplines, including archeology, biology, physics, cosmochemistry and geology. Here, we briefly summarize the most basic concepts of MC-ICP-MS, introduce new technical developments and address important points on how to acquire accurate high-precision isotope measurements of non-traditional stable isotopes

    Depth-dependent δ13 C trends in platform and slope settings of the Campbellrand-Malmani carbonate platform and possible implications for Early Earth oxygenation

    Get PDF
    Highlights • Carbon cycle of Neoarchean carbonate platform and potential oxygen oasis. • Carbon isotopes reveal a shift to aerobic biosphere and increasing oxidation state. • Rare earth element patterns reveal decrease in open ocean water influx. • Rimmed margin architecture was crucial for evolution of aerobic ecosystems. Abstract The evolution of oxygenic photosynthesis is widely seen as the major biological factor for the profound shift from reducing to slightly oxidizing conditions in Earth’s atmosphere during the Archean-Proterozoic transition period. The delay from the first biogenic production of oxygen and the permanent oxidation of Earth’s atmosphere during the early Paleoproteorozoic Great Oxidation Event (GOE) indicates that significant environmental modifications were necessary for an effective accumulation of metabolically produced oxygen. Here we report a distinct temporal shift to heavier carbon isotope signatures in lagoonal and intertidal carbonates (δ13Ccarb from -1.6 to +0.2 ‰, relative to VPDB) and organic matter (δ13Corg from about -40 to -25 ‰, relative to VPDB) from the 2.58–2.50 Gy old shallow–marine Campbellrand-Malmani carbonate platform (South Africa). This indicates an increase in the burial rate of organic matter caused by enhanced primary production as well as a change from an anaerobic to an aerobic ecosystem. Trace element data indicate limited influx of reducing species from deep open ocean water into the platform and an increased supply of nutrients from the continent, both supporting primary production and an increasing oxidation state of the platform interior. These restricted conditions allowed that the dissolved inorganic carbon (DIC) pool in the platform interior developed differently than the open ocean. This is supported by coeval carbonates from the marginal slope setting, which had a higher interaction with open ocean water and do not record a comparable shift in δ13Ccarb throughout the sequence. We propose that the emergence of stable shallow-water carbonate platforms in the Neoarchean provided ideal conditions for the evolution of early aerobic ecosystems, which finally led to the full oxidation of Earth’s atmosphere during the GOE

    Modeling complement activation on human glomerular microvascular endothelial cells

    Get PDF
    Introduction: Atypical hemolytic uremic syndrome (aHUS) is a rare kidney disease caused by dysregulation of the complement alternative pathway. The complement dysregulation specifically leads to damage to the glomerular endothelium. To further understand aHUS pathophysiology, we validated an ex vivo model for measuring complement deposition on both control and patient human glomerular microvascular endothelial cells (GMVECs). Methods: Endothelial cells were incubated with human test sera and stained with an anti-C5b-9 antibody to visualize and quantify complement depositions on the cells with immunofluorescence microscopy.Results: First, we showed that zymosan-activated sera resulted in increased endothelial C5b-9 depositions compared to normal human serum (NHS). The levels of C5b-9 depositions were similar between conditionally immortalized (ci)GMVECs and primary control GMVECs. The protocol with ciGMVECs was further validated and we additionally generated ciGMVECs from an aHUS patient. The increased C5b-9 deposition on control ciGMVECs by zymosan-activated serum could be dose-dependently inhibited by adding the C5 inhibitor eculizumab. Next, sera from five aHUS patients were tested on control ciGMVECs. Sera from acute disease phases of all patients showed increased endothelial C5b-9 deposition levels compared to NHS. The remission samples showed normalized C5b-9 depositions, whether remission was reached with or without complement blockage by eculizumab. We also monitored the glomerular endothelial complement deposition of an aHUS patient with a hybrid complement factor H (CFH)/CFH-related 1 gene during follow-up. This patient had already chronic kidney failure and an ongoing deterioration of kidney function despite absence of markers indicating an aHUS flare. Increased C5b-9 depositions on ciGMVECs were observed in all samples obtained throughout different diseases phases, except for the samples with eculizumab levels above target. We then tested the samples on the patient’s own ciGMVECs. The C5b-9 deposition pattern was comparable and these aHUS patient ciGMVECs also responded similar to NHS as control ciGMVECs. Discussion: In conclusion, we demonstrate a robust and reliable model to adequately measure C5b-9-based complement deposition on human control and patient ciGMVECs. This model can be used to study the pathophysiological mechanisms of aHUS or other diseases associated with endothelial complement activation ex vivo.</p

    A systematic review and meta-analysis of COVID-19 in kidney transplant recipients:Lessons to be learned

    Get PDF
    Kidney transplant recipients (KTR) may be at increased risk of adverse COVID-19 outcomes, due to prevalent comorbidities and immunosuppressed status. Given the global differences in COVID-19 policies and treatments, a robust assessment of all evidence is necessary to evaluate the clinical course of COVID-19 in KTR. Studies on mortality and acute kidney injury (AKI) in KTR in the World Health Organization COVID-19 database were systematically reviewed. We selected studies published between March 2020 and January 18th 2021, including at least five KTR with COVID-19. Random-effects meta-analyses were performed to calculate overall proportions, including 95% confidence intervals (95% CI). Subgroup analyses were performed on time of submission, geographical region, sex, age, time after transplantation, comorbidities, and treatments. We included 74 studies with 5559 KTR with COVID-19 (64.0% males, mean age 58.2 years, mean 73 months after transplantation) in total. The risk of mortality, 23% (95% CI: 21%-27%), and AKI, 50% (95% CI: 44%-56%), is high among KTR with COVID-19, regardless of sex, age and comorbidities, underlining the call to accelerate vaccination programs for KTR. Given the suboptimal reporting across the identified studies, we urge researchers to consistently report anthropometrics, kidney function at baseline and discharge, (changes in) immunosuppressive therapy, AKI, and renal outcome among KTR

    Considerable Variability Among Transplant Nephrologists in Judging Deceased Donor Kidney Offers

    Get PDF
    Introduction: Transplant clinicians may disagree on whether or not to accept a deceased donor kidney offer. We investigated the interobserver variability between transplant nephrologists regarding organ acceptance and whether the use of a prediction model impacted their decisions.Methods: We developed an observational online survey with 6 real-life cases of deceased donor kidneys offered to a waitlisted recipient. Per case, nephrologists were asked to estimate the risk of adverse outcome and whether they would accept the offer for this patient, or for a patient of their own choice, and how certain they felt. These questions were repeated after revealing the risk of adverse outcome, calculated by a validated prediction model. Results: Sixty Dutch nephrologists completed the survey. The intraclass correlation coefficient of their estimated risk of adverse outcome was poor (0.20, 95% confidence interval [CI] 0.08–0.62). Interobserver agreement of the decision on whether or not to accept the kidney offer was also poor (Fleiss kappa 0.13, 95% CI 0.129–0.130). The acceptance rate before and after providing the outcome of the prediction model was significantly influenced in 2 of 6 cases. Acceptance rates varied considerably among transplant centers. Conclusion: In this study, the estimated risk of adverse outcome and subsequent decision to accept a suboptimal donor kidney varied greatly among transplant nephrologists. The use of a prediction model could influence this decision and may enhance nephrologists’ certainty about their decision.</p

    Chiral Polymerization in Open Systems From Chiral-Selective Reaction Rates

    Full text link
    We investigate the possibility that prebiotic homochirality can be achieved exclusively through chiral-selective reaction rate parameters without any other explicit mechanism for chiral bias. Specifically, we examine an open network of polymerization reactions, where the reaction rates can have chiral-selective values. The reactions are neither autocatalytic nor do they contain explicit enantiomeric cross-inhibition terms. We are thus investigating how rare a set of chiral-selective reaction rates needs to be in order to generate a reasonable amount of chiral bias. We quantify our results adopting a statistical approach: varying both the mean value and the rms dispersion of the relevant reaction rates, we show that moderate to high levels of chiral excess can be achieved with fairly small chiral bias, below 10%. Considering the various unknowns related to prebiotic chemical networks in early Earth and the dependence of reaction rates to environmental properties such as temperature and pressure variations, we argue that homochirality could have been achieved from moderate amounts of chiral selectivity in the reaction rates.Comment: 15 pages, 6 figures, accepted for publication in Origins of Life and Evolution of Biosphere

    ABO-incompatible kidney transplantation in perspective of deceased donor transplantation and induction strategies:a propensity-matched analysis

    Get PDF
    BACKGROUND: Kidney transplant candidates are blood group incompatible with roughly one out of three potential living donors. We compared outcomes after ABO-incompatible (ABOi) kidney transplantation with matched ABO-compatible (ABOc) living and deceased donor transplantation and analyzed different induction regimens. METHODS: We performed a retrospective study with propensity matching and compared patient and death-censored graft survival after ABOi versus ABOc living donor and deceased donor kidney transplantation in a nationwide registry from 2006 till 2019. RESULTS: 296 ABOi were compared to 1184 center and propensity matched ABOc living donor and 1184 deceased donor recipients (matching: recipient age, sex, blood group and PRA). Patient survival was better compared to deceased donor (hazard ratio (HR) for death of HR 0.69 [0.49-0.96], and not-significantly different from ABOc living donor recipients (HR 1.28 [0.90-1.81]). Rate of graft failure was higher compared to ABOc living donor transplantation (HR 2.63 [1.72-4.01]). Rejection occurred in 47% of 140 rituximab versus 22% of 50 rituximab/basiliximab, and 4% of 92 alemtuzumab treated recipients (p <0.001). CONCLUSIONS: ABOi kidney transplantation is superior to deceased donor transplantation. Rejection rate and graft failure are higher compared to matched ABOc living donor transplantation, underscoring the need for further studies into risk stratification and induction therapy

    A nationwide evaluation of deceased donor kidney transplantation indicates detrimental consequences of early graft loss

    Get PDF
    Early graft loss (EGL) is a feared outcome of kidney transplantation. Consequently, kidneys with an anticipated risk of EGL are declined for transplantation. In the most favorable scenario, with optimal use of available donor kidneys, the donor pool size is balanced by the risk of EGL, with a tradeoff dictated by the consequences of EGL. To gauge the consequence of EGL we systematically evaluated its impact in an observational study that included all 10,307 deceased-donor kidney transplantations performed in The Netherlands between 1990 and 2018. Incidence of EGL, defined as graft loss within 90 days, in primary transplantation was 8.2% (699/8,511). The main causes were graft rejection (30%), primary nonfunction (25%), and thrombosis or infarction (20%). EGL profoundly impacted short- and long-term patient survival (adjusted hazard ratio; 95% confidence interval: 8.2; 5.1-13.2 and 1.7; 1.3-2.1, respectively). Of the EGL recipients who survived 90 days after transplantation (617/699) only 440 of the 617 were relisted for re-transplantation. Of those relisted, only 298 were ultimately re-transplanted leading to an actual re-transplantation rate of 43%. Noticeably, re-transplantation was associated with a doubled incidence of EGL, but similar long-term graft survival (adjusted hazard ratio 1.1; 0.6-1.8). Thus, EGL after kidney transplantation is a medical catastrophe with high mortality rates, low relisting rates, and increased risk of recurrent EGL following re-transplantation. This implies that detrimental outcomes also involve convergence of risk factors in recipients with EGL. The 8.2% incidence of EGL minimally impacted population mortality, indicating this incidence is acceptable
    • …
    corecore