123 research outputs found
Design of the Magnet System of the Neutron Decay Facility PERC
The PERC (Proton and Electron Radiation Channel) facility is currently under
construction at the research reactor FRM II, Garching. It will serve as an
intense and clean source of electrons and protons from neutron beta decay for
precision studies. It aims to contribute to the determination of the
Cabibbo-Kobayashi-Maskawa quark-mixing element from neutron decay data
and to search for new physics via new effective couplings. PERC's central
component is a 12m long superconducting magnet system. It hosts an 8m long
decay region in a uniform field. An additional high-field region selects the
phase space of electrons and protons which can reach the detectors and largely
improves systematic uncertainties. We discuss the design of the magnet system
and the resulting properties of the magnetic field.Comment: Proceedings of the International Workshop on Particle Physics at
Neutron Sources PPNS 2018, Grenoble, France, May 24-26, 201
Electromagnetic Transmission of Intellectual Property Data to Protect FPGA Designs
International audienceOver the past 10 years, the designers of intellectual properties(IP) have faced increasing threats including cloning, counterfeiting, andreverse-engineering. This is now a critical issue for the microelectronicsindustry. The design of a secure, efficient, lightweight protection scheme fordesign data is a serious challenge for the hardware security community. In thiscontext, this chapter presents two ultra-lightweight transmitters using sidechannel leakage based on electromagnetic emanation to send embedded IPidentity discreetly and quickl
Insights into the Mind of a Trojan Designer: The Challenge to Integrate a Trojan into the Bitstream
The threat of inserting hardware Trojans during the design, production, or
in-field poses a danger for integrated circuits in real-world applications. A
particular critical case of hardware Trojans is the malicious manipulation of
third-party FPGA configurations. In addition to attack vectors during the
design process, FPGAs can be infiltrated in a non-invasive manner after
shipment through alterations of the bitstream. First, we present an improved
methodology for bitstream file format reversing. Second, we introduce a novel
idea for Trojan insertion
BSA Hydrogel Beads Functionalized with a Specific Aptamer Library for Capturing Pseudomonas aeruginosa in Serum and Blood
Systemic blood stream infections are a major threat to human health and are dramatically increasing worldwide. Pseudomonas aeruginosa is a WHO-alerted multi-resistant pathogen of extreme importance as a cause of sepsis. Septicemia patients have significantly increased survival chances if sepsis is diagnosed in the early stages. Affinity materials can not only represent attractive tools for specific diagnostics of pathogens in the blood but can prospectively also serve as the technical foundation of therapeutic filtration devices. Based on the recently developed aptamers directed against P. aeruginosa, we here present aptamer-functionalized beads for specific binding of this pathogen in blood samples. These aptamer capture beads (ACBs) are manufactured by crosslinking bovine serum albumin (BSA) in an emulsion and subsequent functionalization with the amino-modified aptamers on the bead surface using the thiol- and amino-reactive bispecific crosslinker PEG(4)-SPDP. Specific and quantitative binding of P. aeruginosa as the dedicated target of the ACBs was demonstrated in serum and blood. These initial but promising results may open new routes for the development of ACBs as a platform technology for fast and reliable diagnosis of bloodstream infections and, in the long term, blood filtration techniques in the fight against sepsis
High level expression of differentially localized BAG-1 isoforms in some oestrogen receptor-positive human breast cancers
Sensitivity to oestrogens and apoptosis are critical determinants of the development and progression of breast cancer and reflect closely linked pathways in breast epithelial cells. For example, induction of BCL-2 oncoprotein expression by oestrogen contributes to suppression of apoptosis and BCL-2 and oestrogen receptor (ER) are frequently co-expressed in tumours. BAG-1/HAP is a multifunctional protein which complexes with BCL-2 and steroid hormone receptors (including the ER), and can suppress apoptosis and influence steroid hormone-dependent transcription. Therefore, analysis of expression of BAG-1 in human breast cancer is of considerable interest. BAG-1 was readily detected by immunostaining in normal breast epithelial cells and most ER-positive tumours, but was undetectable or weakly expressed in ER-negative tumours. BAG-1 positive cells showed a predominantly cytoplasmic or cytoplasmic plus nuclear distribution of staining. A correlation between ER and BAG-1 was also evident in breast cancer derived cell lines, as all lines examined with functional ER expression also expressed high levels of BAG-1. In addition to the prototypical 36 kDa BAG-1 isoform, breast cancer cells expressed higher molecular weight isoforms and, in contrast to BCL-2, BAG-1 expression was independent of oestrogens. BAG-1 isoforms were differentially localized to the nucleus or cytoplasm and this was also independent of oestrogens. These results demonstrate a close association between BAG-1 and functional ER expression and suggest BAG-1 may be useful as a therapeutic target or prognostic marker in breast cancer. © 1999 Cancer Research Campaig
Improved Technique for Rearing the Alfalfa Weevil, Hypera postica (Gyllenhal), in the Laboratory
Static scanning tunneling microscopy images reveal the mechanism of supramolecular polymerization of an oligopyridineon graphite
Supramolecular polymerization of a donor–acceptor bisterpyridine (BTP) equipped with an electron-rich carbazole unit is observed by scanning tunneling microscopy (STM) at the highly oriented pyrolytic graphite (HOPG)|solution interface. It is shown that two-dimensional crystals of supramolecular (co)polymers are formed by chain growth polymerization, which in turn can be described by copolymerization statistics. From concentration-dependent measurements, derived copolymerization parameters and DFT calculations, a mechanism for self-assembly is developed that suggests a kinetically driven polymerization process in combination with thermodynamically controlled crystallization
- …
