3,208 research outputs found
Fast scan control for deflection type mass spectrometers
A high speed scan device is reported that allows most any scanning sector mass spectrometer to measure preselected gases at a very high sampling rate. The device generates a rapidly changing staircase output which is applied to the accelerator of the spectrometer and it also generates defocusing pulses that are applied to one of the deflecting plates of the spectrometer which when shorted to ground deflects the ion beam away from the collector. A defocusing pulse occurs each time there is a change in the staircase output
Should the FDIC worry about the FHLB? the impact of Federal Home Loan Bank advances on the Bank Insurance Fund
Does growing commercial-bank reliance on Federal Home Loan Bank (FHLBank) advances increase expected losses to the Bank Insurance Fund (BIF)? Our approach to this question begins by modeling the link between advances and expected losses. We then quantify the effect of advances on default probability with a CAMELS-downgrade model. Finally, we assess the impact on loss-given-default by estimating resolution costs in two scenarios: the liquidation of all banks with failure probabilities above two percent and the liquidation of all banks with advance-to-asset ratios above 15 percent. The evidence points to non-trivial increases in expected losses. The policy implication is that the FDIC should price FHLBank-related exposures.Banks and banking ; Financial institutions ; Deposit insurance
Purification and electron cryomicroscopy of coronavirus particles.
Intact, enveloped coronavirus particles vary widely in size and contour, and are thus refractory to study by traditional structural means such as X-ray crystallography. Electron microscopy (EM) overcomes some problems associated with particle variability and has been an important tool for investigating coronavirus ultrastructure. However, EM sample preparation requires that the specimen be dried onto a carbon support film before imaging, collapsing internal particle structure in the case of coronaviruses. Moreover, conventional EM achieves image contrast by immersing the specimen briefly in heavy-metal-containing stain, which reveals some features while obscuring others. Electron cryomicroscopy (cryo-EM) instead employs a porous support film, to which the specimen is adsorbed and flash-frozen. Specimens preserved in vitreous ice over holes in the support film can then be imaged without additional staining. Cryo-EM, coupled with single-particle image analysis techniques, makes it possible to examine the size, structure and arrangement of coronavirus structural components in fully hydrated, native virions. Two virus purification procedures are described
Large temporal variations of energetic electron intensities at mid-latitudes in the outer radiation zone Progress report
Variations of electron flux density observations by Explorer 12 and 1
Catalysts for ultrahigh current density oxygen cathodes for space fuel cell applications
The objective of this research was to identify promising electrocatalyst/support systems for the oxygen cathode in alkaline fuel cells operating at relatively high temperatures, O2 pressures and current densities. A number of materials were prepared, including Pb-Ru and Pb-Ir pyrochlores, RuO2 and Pt-doped RuO2, and lithiated NiO. Several of these were prepared using techniques that had not been previously used to prepare them. Particularly interesting is the use of the alkaline solution technique to prepare the Pt-doped Pb-Ru pyrochlore in high area form. Well-crystallized Pb(2)Ru(2)O(7-y) was used to fabricate high performance O2 cathodes with relatively good stability in room temperature KOH. This material was also found to be stable over a useful potential range at approximately 140 C in concentrated KOH. Other pyrochlores were found to be either unstable (amorphous samples) or the fabrication of the gas-fed electrodes could not be fully optimized during this project period. Future work may be directed at this problem. High area platinum supported on conductive metal oxide supports produced mixed results: small improvements in O2 reduction performance for Pb(2)Ru(2)O(7-y) but a large improvement for Li-doped NiO at room temperature. Nearly reversible behavior was observed for the O2/OH couple for Li-doped NiO at approximately 200 C
Performance Data from a Wind-Tunnel Test of Two Main-rotor Blade Designs for a Utility-Class Helicopter
An investigation was conducted in the NASA Langley Transonic Dynamics Tunnel to evaluate an advanced main rotor designed for use on a utility class helicopter, specifically the U.S. Army UH-60A Blackhawk. This rotor design incorporated advanced twist, airfoil cross sections, and geometric planform. For evaluation purposes, the current UH-60A main rotor was also tested and is referred to as the baseline blade set. A total of four blade sets were tested. One set of both the baseline and the advanced rotors were dynamically scaled to represent a full scale helicopter rotor blade design. The remaining advanced and baseline blade sets were not dynamically scaled so as to isolate the effects of structural elasticity. The investigation was conducted in hover and at rotor advance ratios ranging from 0.15 to 0.4 at a range of nominal test medium densities from 0.00238 to 0.009 slugs/cu ft. This range of densities, coupled with varying rotor lift and propulsive force, allowed for the simulation of several vehicle gross weight and density altitude combinations. Performance data are presented for all blade sets without analysis; however, cross referencing of data with flight condition may be useful to the analyst for validating aeroelastic theories and design methodologies as well as for evaluating advanced design parameters
Is the Federal Home Loan Bank system good for banks? a look at evidence on membership, advances and risk
Since the early 1990s, commercial banks have turned to Federal Home Loan Bank (FHLBank) advances to plug the gap between loan and deposit growth. Is this trend worrisome? On the one hand, advances implicitly encourage risk by insulating borrowers from market discipline. On the other, advances give borrowers greater flexibility to managing interest rate and liquidity risk. And access to FHLBank funding encourages members to reshape their balance sheets in ways that could lower credit risk. Using quarterly financial and supervisory data for banks from 1992 to 2000, we assess the effect of FHLBank membership and advances on risk. The evidence suggests liquidity and leverage risks rose modestly, but interest-rate risk declined somewhat. Credit risk and overall failure risk were largely unaffected. Although the evidence suggest FHLBank membership and advances have had, at best, only a modest impact on bank risk, we caution that the 1990s constitute one observation and that moral hazard could be pronounced if leverage ratios revert to historical norms.Government-sponsored enterprises ; Federal home loan banks ; Bank liquidity
Electrochemical Studies of Redox Systems for Energy Storage
Particular attention was paid to the Cr(II)/Cr(III) redox couple in aqueous solutions in the presence of Cl(-) ions. The aim of this research has been to unravel the electrode kinetics of this redox couple and the effect of Cl(1) and electrode substrate. Gold and silver were studied as electrodes and the results show distinctive differences; this is probably due to the role Cl(-) ion may play as a mediator in the reaction and the difference in state of electrical charge on these two metals (difference in the potential of zero charge, pzc). The competition of hydrogen evolution with CrCl3 reduction on these surfaces was studied by means of the rotating ring disk electrode (RRDE). The ring downstream measures the flux of chromous ions from the disk and therefore separation of both Cr(III) and H2 generation can be achieved by analyzing ring and disk currents. The conditions for the quantitative detection of Cr(2+) at the ring electrode were established. Underpotential deposition of Pb on Ag and its effect on the electrokinetics of Cr(II)/Cr(III) reaction was studied
Perovskite oxides: Oxygen electrocatalysis and bulk structure
Perovskite type oxides were considered for use as oxygen reduction and generation electrocatalysts in alkaline electrolytes. Perovskite stability and electrocatalytic activity are studied along with possible relationships of the latter with the bulk solid state properties. A series of compounds of the type LaFe(x)Ni1(-x)O3 was used as a model system to gain information on the possible relationships between surface catalytic activity and bulk structure. Hydrogen peroxide decomposition rate constants were measured for these compounds. Ex situ Mossbauer effect spectroscopy (MES), and magnetic susceptibility measurements were used to study the solid state properties. X ray photoelectron spectroscopy (XPS) was used to examine the surface. MES has indicated the presence of a paramagnetic to magnetically ordered phase transition for values of x between 0.4 and 0.5. A correlation was found between the values of the MES isomer shift and the catalytic activity for peroxide decomposition. Thus, the catalytic activity can be correlated to the d-electron density for the transition metal cations
Cultivation and enrichment of anammox culture in a submerged membrane bioreactor
Results of a research project comparing membrane fouling rates of PVDF to PTFE membrane
- …
