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Abstract

A thorough search of Explorers 12 and 14 observations of
electron (40 kéV'ﬁ'E < 2 MeV) intensities within the outer radiation
zone during the period 1961-1963 has provided evidences of several
catastrophic rapid décreases and recoveries of these electron inten-
sities within periods ~ several minutes at L-values ~ 5 to 6.
Typical values for these intensity fluctuations are by factors
> 500, > 100 and > 1000 for electrons E > 4O keV, 230 keV and
1.6 MeV, respectively. A comparison of the temporal variations
of integral energy spectrums of electron intensities, latitudes
of the observed events, ground-based observations of auroral
magnetic activity, and low-altitude measurements of electron
intensities within the above energy range allow this striking
iphenomenon to befinterpietéd in terms of redistribution of these
outér zone electrons during the distortion of the geomagnetic
‘field by the low-energy plasma producing the associated magnetic
-disturbance and of conservation of the first two adiabatic in-
variants p and I. The principal features of these events are
adequately accounted forvwith the above interpretation, as the

signature of the motion of the 'trapping boundary' for energetic



electrons at mid-latitudes in the dark hemisphere of the magneto-
sphere, which eliminates the alternative assumption of an almost

unreasonably strong acceleration mechanism for outer zone energetic

electrons.



I. Introduction

Temporal variations of electron intensities over the energy
range ~ 10 keV to 1 MeV within the earth's outer radiation zone
have been extensively surveyed during the past several years
[ef Frank, 1965a; Davis, 1965; Craven, 1966; Owens and Frank, 1968;
Williams, Arens and Lanzerotti, 1968; Kaufmenn and Konradi, 1969].
TheSé intensity variations are the signatures of time-dependent
acceleration and loss mechanisms operative upon these higher energy
electrons and of dynamical changes in the topology of the geomagnetic
field. Of'immediate interest to our current investigation are ob-
servations of rapid, catastrophic fluctuations of theée energetic
electron infensities, by factors of lO2 to th within periods ~
several minufes, at L-values ~ 5 to 6 earth radii deep within the
outer radiation zone. Several examples of this phenomenon during
geomagnetically disturbed periods have previously been noted in
the surveys of the energetic charged particle populations of the
outer radiation zone with Explorer 14 [Frank, 1965a], Explorer 26
[Brown, Cahill, Davis, McIlwain and Roberts, 1968] and Explorer 12
[Konradi, 1968]. Characteristic periods for increases of electron
(E > 250 keV) fluxes to peak intensities at near-equatorial and

moderate latitudes in the outer radiation zone following the onsets



of geomagnetic storms are typically ~ days [cf Owens and Frank,
1968]; observations of similar increases of electron intensities
but with typical time scales of ~ minutes as presented in our
following discussion and previously réported as noted above would
appear to indicate that an extremely strong acceleration mechanism
for energetié outer zone electrons was occasionally operative

4
during periods of relatively severe geomagnetic activity. Our
present éxamination of the magnetic and local time coordinates
of these striking events, and of observations of associated mag-
netic disturbances and measurements of similar phenomena cobtained
with satellite-borne instrumentation at low altitudes, allows us
to reihterpret the gross character of these severe temporal var-
iations of energetic electron intensities observed with Explorers 12
and 14 in terms of spatial redistribution of outer zone electrons
with conservation of the first two adiabatic invariants, pu and I,
in the changing topology of the magnetic field in these regions

during magnetically disturbed periods.



ITI. Observations

Observations of energetic outer zone electron intensities
over the energy range ~ Lo keV to ~ 2 MeV reported here were obtained
with arrays of Geiger-Mueller tubes borne on the earth-satellites
Explorer 12 (initial apogee 83,600 km and perigee 6700 geocentric
radial distances,»inclination 33°, and period 26.5 hours) and
Expiorer 14 (initial apogee 104,900 km and perigee 6650 km geocen-
trié radial distances, inclination 33°, and period 36.L4 hours).
Periods of data transmission extended from launch on 16 August 1961
to 6 December 1961 for Explorer 12 and from launch on 2 October 1962
to 9 August 1963 for Explorer 1L. Descriptions of the instrumenta-
tion and‘of the orbital characteristics have been previously provided
in the literature for Explorer 12 [Freeman, 1964; Ackerson and Frank,
19663 Frank, 1966] and for Explorer 14 [Frank, Van Allen and Hills,
196L4; Frank and Van Allen, 1964, 1966; Frank 1965a,b,c}, and com-
prehensive plots of all of the detector responses for the above
periods of data collection are available [Frank, Bohlin and DeCoster,
19663 Frank, Bohlin and McClain, 1966].

A typical set of observations of energetic electron (E > 40 keV,
> 230 keV, and > 1.6 MeV) omnidirectional intensities with Explorer

14 during the outbound segment of the spacecraft's orbit through the



outer radiation zone at moderate geomagnetic latitudes is presented
in Figure 1. These measurements were obtained during a period of
relative magnetic quiescence within the local evening-midnight quad-
rant of the outer radiation zone. The salient feature of the obser-
vations summarized in Figure 1 pertinent to the present discussion
is the generally monotonic decrease of energetic electron intensities
with increasing L-values from L = 5.0 to the abrupt decrease of
intensities at I = 8.3, the so-called 'trapping boundary'. All
magnetic coordinates, B and L, used as reference coordinates in the
following discuséion for organization of intensity measurements have
been calculated by invoking the Jensen and Cain [1962] model of the
gecomagnetic field derived from ground-based magnetic surveys. The
striking phenomena which has attracted our current interest is dis-
played in Figure 2 which summarizes the observations of energetic
electron intensities during the next outbound pass of Explorer 14
through the outer radiation zone following the series of observations
depicted in Figure 1 and provides a previously published example
[Frank, 1965a), at L ~ 5, of catastrophic decreases and increases of
electron intensities at remarkably low L-values within the outer
zone. For example, the decrease of electron (E > 1.6 MeV) intensities
by a factor of lOlL centered at 20;38 U.T. occurred within a period

of ~ 7 minutés (~’1500 km of displacement of the spacecraft along

its trajectory or ~ 150 Larmor radii for 2-MeV electrons mirroring



in this region). The magnetic latitudes and local times for a given
L-value for these two series of measurements are, for all practical
purposes, equal. These severe gradients deep within the outer radia-
tion zone appear to preclude the possibility that the intensity
profiles given in Figure 2 can be interpreted as the signature of
quasi-stationary spatial features of the charged particle distri-
butions as viewed along the spacecraft's trajectory and strongly
indicate that these severe ihtensity variations are primarily tem-
poral fluctuations with characteristic time scales ~ several minutes.
Further, the fluctuations of'electron‘intensities for all energies
during the period é0:49 through 21:36 U.T. after the recovery of
intensities generally track with respect to maximum and minimum in-
tensities hence éliminating the possibility of interpretation of
these fluctuations in terms of 'drift-periodic echoes' [Brever,
Schulz and Eviatar; 1969], or bunching of electrons in longitude,
since the dispersion of drift velocities over such a broad energy
range is inconsistent with the above character of the intensity
profiles. ‘Koﬁradi»[l968] has previously demonstrated that these
sudden variations of outer zone proton and electron intensities as
observed with instrumentation borne on Explorer 12 are closely
associated With'polarAsubétorms. Figure 3 summarizes observations
of largé negative bays at £hree magnetic observatories for fhe

period of méasurements displayed in Figure 2 and further establishes



the close association of the occurrence of polar substorms and these
large electron intensity fluctuations within the outer radiation
zone. Further informaﬁion regarding the nature of the mechanism
responsible for these intensity variations may be gained by a com-~
parison of the omnidirectional, integral electron spectrums for a
typical period of magnetic quiescence at selected L-values shown in
Figure H (see also Figure 1) with the electron spectrums before and
after the intensity drop-out aﬁ L = 4.7 and 5.8, respectively, pre-
_sented in Figure 5 for 20 December 1962 (see also Figure 2). The
electron spectrums at L ~ 6‘for both these periods do not differ
significantly with regard to the spectral slope -or general level of
intensities; i.e., there is no dramatic disparity between the post-
event electron (E > 40 keV) integral spectrums and electron spectrums
observed at similar’magnetic coordinates during periods of relative
magnetic quiescence.

The entire body of Explorer 1h observations of electron in-
tensities within the outer radiation zone has been examined and
three further abrupt intensity variations similar to the event dis-
~cussed above‘were found. ' These further observations are summarized
in Figures 65A7 and 8 for evehts occurring on 6, 9 and 23 November
1961, respectively; and the corresponding pertinent coordinates and
associated ﬁagnetic bays at magnetic obsérvatories located in the

vicinity of the instantaneous geographic longitude of the satellite
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position are provided by Tables i and II. With the exception of the
event centered at relatively large L ~ 8 of 9 November 1961, the
remaining two abrupt intensity variations were also located at
L ~5to 6. A cursory‘inspection of Table I also reveals that all
such events observed with Explorers 12 and 14 were located in the
dark hemisphere of the magnetosphere, although measurements were
equally available for all local times at moderate geomagnetic lati-
tudes ~ 30° to LO°.

Two of these striking electron intensity variations in the
outer radiation zone were discernible in the responses of the G.M.
tube complement borne on Explorer 12 over its useful lifetime.
The coordinates and associated magnetic bays are summarized in
Tables I and IT for these two’events of 27 October and 1 December
1961. Observations of outer zone electron intensities and of
associated magnetic bays for 1 December are displayed in Figures 9
and 10, respectively. Konradi [1968] has previously discussed
similar severe temporai variations of the intensities of protons
(> 100 kev) and of low energy electrons (20-100 keV) observed
with an ion-electron detector borne on the same satellite. Of
major interest in the present discussion of this event is the com-
parison of simultaneous measurements of the magnetic field (un-
published data, courtesy of L. J. Cahill) and observations bf

energetic electron intensities presented in Figure 11. Although



13

there is no one-to-one correspondence of maxima and minima in the
observed scalar magnetic field ’El and electron intensity profiles,
it is of importance to note that the time scales for large fluctua-
tions of these two parameters are grossly similar.

In order to provide further evidences concerning the mechan-

ism responsible for the occasional, abrupt variations of electron
intensities reported here, an initial survey of Injun I measurements
of energetic electron intensities at low altitudes (~ 1000 km) in
the outer radiation zone was undertaken. An example of similar
severe temporal variations of electron (E > 40 keV) intensities is
displayed in Figure 12 and differs in character from the Explorer 12
and 14 observations only in the time scale (~ 30 seconds), but this
particular event is an exception to the low-altitude observations

of this phenomenon since the recovery of intensities is not of%en
seen at these low altitudes [cf Figure 1L, Craven, 1966] presumably
due to the rapid (~ minutes) motidn of the satellite through the
low-altitude region of the outer radiation zone within time intervals

comparable to or less than the durations of the events observed at

high altitudes.
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IIT. Interpretation and Discussion

Our current investigation of observations of catastrophic
fluctuations of energetic electron (40 keV < E < 2 MeV) intensities
by factors of lO2 to ZLO,+ within periods ~ minutes at L-values ~ 5 to
6 within the outer radiation zone with instrumentation borne on
Explorer 12 and 14 and comparisons with ground-based and additional_
satellite measurements have provided the following information con-
cerning the ?henomenological nature of these events.

(1) These events are not frequently observed in the outer
radiation zone. Only six decisive examples of this phenomenon are
evident in the approximately 450 available passes of Explorers 12

and 14 through the outer radiation zone.

(2) Magnetic bays and world-wide magnetic storms are closely
associated with these events [cf Konradi, 1968; Owens and Frank,
1968]. This association implies that these abrupt intensity varia-
tions are concurrent with large-scale distortion of the distant
geomaghetic field and development of the storm-time extraterres-
trial ‘ring current'.

(3) sSimulteneous measurements of the magnetic fields and
oﬁnidirectional electron intensities with Explorer 12 show that the
time scales for fluctuations of the scalar magnetic field and of

the electron intensities are similar.
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(4) Electron integral spectrums (E > 4O keV) observed before
and after these striking intensity decreases are not greatly dissim-
ilar to electron spectrums at similar magnetic coordinates during
periods of relative magnetic quiescence.

(5) All of these six intensity variations occurred at
moderate magnetic latitudes ~ 30° to L40° and in the dark hemisphere
of the magnetosphere although an almost equal number of measurements
were available at near-equatorial latitudes and in the sunlit hemi-
sphere of the magnetosphere in the outer radiation zone. A close
relative of these intensity variations has been observed at low-
a;titudes (~ 1000 km) in the outer radiation zone at similar I,-values
[cf Craven, 1966; Williams and Ness, 1966] although the recovery of
intensities;is not usually seen presumably due to the rapid transit
of these satellites through the narrow 'horns' of the outer radiation
zone at these low altitudes.

These large fluctuations of energetic outer zone electron
intensities observed with Explorers 12 and 14 are the signature of
either (1) an extremely effective acceleration (deceleration)
mechanism occasionally operative in the outer radiation zone or (2)
spatiélvredistribution of the electron distributions in response to
the varying topoiogy of the geomagnetic field during geomagnetically
disturbed periods. An acéeleration mechanism for electrons

(E > 1.6 MeV) sufficient to replenish a major fraction of the outer
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zone energetic electron population within periods of ~ several
minutes is grossly incompatible with typical replenishment times

of ~ days [cf Owens and Frank, 1968] and would satisfy the above
observational restraints only by ad hoc construction, whereas a
simple, direct interpretation of these severe variations of electron
intensities in terms of redistribution of the electron populations
(more specifically, as the motion of the 'trapping boundary' at

mid-latitudes-in the dark hemisphere of the magnetosphere across the

satellite position) in a time-dependent distorted geomagnetic field
and of the consefvation of the first two adiabatic invariants of
charged particle motien, W and I, satisfies all of the major obser-

: vatidhal reqﬁirements. Accordingly, reasonable models of the qui-
escentrand‘distorted geomagnetic field in the dark hemisphere of

the magnetosphere were graphically constructed with the guidance of
previously published models of the distant geomagnetic field [williams
and Mead, 1965; Akasofu, 1966; Roederer, 1968a,b; Schield, 1969] and
the locus of mirror points for outer zone electrons in the guiescent
model were transformed into the distorted topology of the storm-

time geomagnetic field resulting from enhanced magnetic tail fields

i

and exterrestrial 'ring current' with the assumption that p = E/Bm

constant (electron energy E ~ constant, i.e., acceleration is

relatively unimportant) and £ = constant where
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1 =M@ - %—)%ds ~ 1,
M m

Bm is the field magnitude at the mirror points M and M¥, B is the
field magnitude along the magnetic field line for which the integral
is to be evaluated and £ is the length of the field line between
mirror points. The approximation 4 ~ constant is sufficiently
accurate at magnetic latitudes km > 25° for our present purposes
[cf Mead, 1966]. An example of graphic solutions is presented
in Figure 13 which displays a guiescent geomagnetic field model A
and distorted model A'. The position of Explorer 14 during the
event of 20 December 1962 (see Figure 2) is plotted in dipole
coordinates (magnetic latitude and radial distance) in each of the
six coordinate axes shown in Figure 13. Charged particles mirroring
at sample coordinates Bm and I were selected (B) and then graphically
transformed into the distorted field model B'. The envelope of a
sensible set of these points provided the envelope C' of the outer
radiation zone in the distorted magnetic field from the initial dis-
tributions C as previously given by Frank [1965a] during relatively
quiescent conditions. It should be noted that a reasonable inflation
of the outer magnetosphere (C') is sufficient to force a significant

collapse of the night-time trapping boundary at mid-latitudes ~ 30°
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to 40° and geocentric radial distances ~ 3 to 4 RE to lower lati-
tudes and that the catastrophic fluctuations of electron intensities
centered at 20:45 U.T. on 20 December, for example, as displayed

in Figure 2 can be attributed to the displacement of the trapping
boundary to a position below the satellite location for periods

~ several minutes and its subsequent recovery to a more frequent
envelope which encloses the satellite position (C). In conclusion,
our present survey of these catastrophic temporal variations of
electron (4O keV < E < 2 MeV) intensities by factors 10° to lOLL
within the outer radiation zone with Explorers 12 and lh delineates
this phenomenon as attributable to a temporary redistribution of
the electron distributions within this region arising from large-
scale changes in the topology of the distant geomagnetic field for
periods ~ several minutes during magnetic storms, as opposed to

the alternative of assuming these fluctuations reflect the pre~

sence of an almost unreasonably strong acceleration mechanism

occasionally effective in the outer radiation zone.
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Figure Captions

omnidirectional intensities of electrons (E > L0 keV,
> 250 keV and > 1.6 MeV) as functions of Universal
Time for the outbound pass of Explorer 14 through the
outer radiation zone on 19 December 1962. Several
pertinent position coordinates are included in the
top margin. The dashed lines designate the intensity
thresholds of the instrumentation.

Continuation of Figure 1 for the next outbound pass
of Explorer 1k through the outer radiation zone on

20 December 1962. The feature of interest in the
present investigation is the catastrophic fluctuations
of intensities over the period 20:35 to 20:50 U.T.
centered at L~5.5.

Ground-based magnetometer records for the period of
observations displayed in Figure 2.

ElectrQn integral spectrums at selected L-values for
the outer radiation zone observations on 19 December
1962 during a period of relative magnetic quiescence

(refer to Figure 1).



Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

25

Electron integrallspectrums prior to and after the

- abrupt decrease and increase of intensities on

20 December 1962 during a geomagnetic storm (refer
to Figure 2).

Continuation of’Figure_l-for the outbound pass of

' Explorer‘lh through the outer radiation zone on

-6 November 1962.

Continuation of Figure 1 for the outbound pass of
Eiplorerblh'through the outer radiation zone on

9 November 1962.

Continuation of Figure 1 for the outbound pass of
Explorer 1l through the outer radiation zome on

23 November 1962.

Omnidirectional‘ihtensities of electrons (40 < E <
50 keV and > 1.6 MeV) as functions of Universal
Time for the outbound pass of Explorer 12 through
thé outer radiation zone on 1 December 1961. The
dashed lines designate the intensity thresholds of
the instrumentation.

Ground-based maghetométer records for the period of

satellite observationé displayed in Figure 9.



Figure 11.

Figure 12,

Figure 13.
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Comparison of simultaneous measurements of the scalar
magnetic field (courtesy of L. J. Cahill) and of the
omnidirectional electron (E > 1.6 MeV) intensities
for a segment of the observations shown in Figure 9.
Observations of large fluctuations of electron

(E > 40 keV) intensities at low altitudes (~ 1000 km)

-in the outer radiation zone with earth-satellite

Tnjun 1. The geocentric local time of the position
of the satellite during these measurements was

~ 22:00.

Graphic analysis of the redistribution of energetic
electrons (E ~ 1 MeV) in a meridional plane in the
dark hemisphere of the magnetosphere during a

magnetically disturbed period (see text).
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