2,551 research outputs found
A spherical model with directional interactions: I. Static properties
We introduce a simple spherical model whose structural properties are similar
to the ones generated by models with directional interactions, by employing a
binary mixture of large and small hard spheres, with a square-well attraction
acting only between particles of different size. The small particles provide
the bonds between the large ones. With a proper choice of the interaction
parameters, as well as of the relative concentration of the two species, it is
possible to control the effective valence. Here we focus on a specific choice
of the parameters which favors tetrahedral ordering and study the equilibrium
static properties of the system in a large window of densities and
temperatures. Upon lowering the temperature we observe a progressive increase
in local order, accompanied by the formation of a four-coordinated network of
bonds. Three different density regions are observed: at low density the system
phase separates into a gas and a liquid phase; at intermediate densities a
network of fully bonded particles develops; at high densities -- due to the
competition between excluded volume and attractive interactions -- the system
forms a defective network. The very same behavior has been previously observed
in numerical studies of non-spherical models for molecular liquids, such as
water, and in models of patchy colloidal particles. Differently from these
models, theoretical treatments devised for spherical potentials, e.g. integral
equations and ideal mode coupling theory for the glass transition can be
applied in the present case, opening the way for a deeper understanding of the
thermodynamic and dynamic behavior of low valence molecules and particles.Comment: 11 pages, 11 figure
Chaos assisted adiabatic passage
We study the exact dynamics underlying stimulated Raman adiabatic passage
(STIRAP) for a particle in a multi-level anharmonic system (the infinite
square-well) driven by two sequential laser pulses, each with constant carrier
frequency. In phase space regions where the laser pulses create chaos, the
particle can be transferred coherently into energy states different from those
predicted by traditional STIRAP. It appears that a transition to chaos can
provide a new tool to control the outcome of STIRAP
On the topology of adiabatic passage
We examine the topology of eigenenergy surfaces characterizing the population
transfer processes based on adiabatic passage. We show that this topology is
the essential feature for the analysis of the population transfers and the
prediction of its final result. We reinterpret diverse known processes, such as
stimulated Raman adiabatic passage (STIRAP), frequency-chirped adiabatic
passage and Stark-chirped rapid adiabatic passage (SCRAP). Moreover, using this
picture, we display new related possibilities of transfer. In particular, we
show that we can selectively control the level which will be populated in
STIRAP process in Lambda or V systems by the choice of the peak amplitudes or
the pulse sequence
Peculiarities of polyneuropathy in the peripheral t-cell lymphoma with cytostatics
This paper presents data on the occurrence and form of polyneuropathy in the peripheral T-cell lymphoma, and its main pathogenesis elements. Here the toxic effects of cytotoxic drugs and their role in the impairment of the nervous system have been describe
Pulse-driven near-resonant quantum adiabatic dynamics: lifting of quasi-degeneracy
We study the quantum dynamics of a two-level system driven by a pulse that
starts near-resonant for small amplitudes, yielding nonadiabatic evolution, and
induces an adiabatic evolution for larger amplitudes. This problem is analyzed
in terms of lifting of degeneracy for rising amplitudes. It is solved exactly
for the case of linear and exponential rising. Approximate solutions are given
in the case of power law rising. This allows us to determine approximative
formulas for the lineshape of resonant excitation by various forms of pulses
such as truncated trig-pulses. We also analyze and explain the various
superpositions of states that can be obtained by the Half Stark Chirped Rapid
Adiabatic Passage (Half-SCRAP) process.Comment: 21 pages, 12 figure
On the Definition of Effective Permittivity and Permeability For Thin Composite Layers
The problem of definition of effective material parameters (permittivity and
permeability) for composite layers containing only one-two parallel arrays of
complex-shaped inclusions is discussed. Such structures are of high importance
for the design of novel metamaterials, where the realizable layers quite often
have only one or two layers of particles across the sample thickness. Effective
parameters which describe the averaged induced polarizations are introduced. As
an explicit example, we develop an analytical model suitable for calculation of
the effective material parameters and
for double arrays of electrically small electrically polarizable scatterers.
Electric and magnetic dipole moments induced in the structure and the
corresponding reflection and transmission coefficients are calculated using the
local field approach for the normal plane-wave incidence, and effective
parameters are introduced through the averaged fields and polarizations. In the
absence of losses both material parameters are purely real and satisfy the
Kramers-Kronig relations and the second law of thermodynamics. We compare the
analytical results to the simulated and experimental results available in the
literature. The physical meaning of the introduced parameters is discussed in
detail.Comment: 6 pages, 5 figure
Modes and the alpha-gamma transition in rf capacitive discharges in N2O at different rf frequencies
This paper reports current-voltage characteristics and pressure-voltage transition curves from the weak-current a-mode to the strong-current g-mode for rf capacitive discharges in N2O at
frequencies of 2 MHz, 13.56 MHz, and 27.12 MHz. At 2 MHz the rf discharge is mostly resistive whereas at 13.56 MHz and 27.12 MHz it is mostly capacitive. The weak-current a-mode was found to exist only above a certain minimum gas pressure for all frequencies studied [N. Yatsenko Sov. Phys. Tech. Phys. 26, 678 (19810] previously proposed that the a−g transition corresponds to
breakdown of the sheaths. However, we show that this is the case only for sufficiently high gas pressures. At lower pressure there is a smooth transition from the weak-current a-mode to a strong-current g-mode, in which the sheaths produce fast electrons but the sheath has not undergone breakdown
Effective Soft-Core Potentials and Mesoscopic Simulations of Binary Polymer Mixtures
Mesoscopic molecular dynamics simulations are used to determine the large
scale structure of several binary polymer mixtures of various chemical
architecture, concentration, and thermodynamic conditions. By implementing an
analytical formalism, which is based on the solution to the Ornstein-Zernike
equation, each polymer chain is mapped onto the level of a single soft colloid.
From the appropriate closure relation, the effective, soft-core potential
between coarse-grained units is obtained and used as input to our mesoscale
simulations. The potential derived in this manner is analytical and explicitly
parameter dependent, making it general and transferable to numerous systems of
interest. From computer simulations performed under various thermodynamic
conditions the structure of the polymer mixture, through pair correlation
functions, is determined over the entire miscible region of the phase diagram.
In the athermal regime mesoscale simulations exhibit quantitative agreement
with united atom simulations. Furthermore, they also provide information at
larger scales than can be attained by united atom simulations and in the
thermal regime approaching the phase transition.Comment: 19 pages, 11 figures, 3 table
Measurement of the production of a W boson in association with a charm quark in pp collisions at √s = 7 TeV with the ATLAS detector
The production of a W boson in association with a single charm quark is studied using 4.6 fb−1 of pp collision data at s√ = 7 TeV collected with the ATLAS detector at the Large Hadron Collider. In events in which a W boson decays to an electron or muon, the charm quark is tagged either by its semileptonic decay to a muon or by the presence of a charmed meson. The integrated and differential cross sections as a function of the pseudorapidity of the lepton from the W-boson decay are measured. Results are compared to the predictions of next-to-leading-order QCD calculations obtained from various parton distribution function parameterisations. The ratio of the strange-to-down sea-quark distributions is determined to be 0.96+0.26−0.30 at Q 2 = 1.9 GeV2, which supports the hypothesis of an SU(3)-symmetric composition of the light-quark sea. Additionally, the cross-section ratio σ(W + +c¯¯)/σ(W − + c) is compared to the predictions obtained using parton distribution function parameterisations with different assumptions about the s−s¯¯¯ quark asymmetry
- …
