14,387 research outputs found

    DDMF: An Efficient Decision Diagram Structure for Design Verification of Quantum Circuits under a Practical Restriction

    Get PDF
    Recently much attention has been paid to quantum circuit design to prepare for the future "quantum computation era." Like the conventional logic synthesis, it should be important to verify and analyze the functionalities of generated quantum circuits. For that purpose, we propose an efficient verification method for quantum circuits under a practical restriction. Thanks to the restriction, we can introduce an efficient verification scheme based on decision diagrams called Decision Diagrams for Matrix Functions (DDMFs). Then, we show analytically the advantages of our approach based on DDMFs over the previous verification techniques. In order to introduce DDMFs, we also introduce new concepts, quantum functions and matrix functions, which may also be interesting and useful on their own for designing quantum circuits.Comment: 15 pages, 14 figures, to appear IEICE Trans. Fundamentals, Vol. E91-A, No.1

    A unified model for the long and high jump

    Full text link
    A simple model based on the maximum energy that an athlete can produce in a small time interval is used to describe the high and long jump. Conservation of angular momentum is used to explain why an athlete should run horizontally to perform a vertical jump. Our results agree with world records.Comment: Accepted for publication in Am. J. Phy

    Pendulum Leptogenesis

    Full text link
    We propose a new non-thermal Leptogenesis mechanism that takes place during the reheating epoch, and utilizes the Ratchet mechanism. The interplay between the oscillation of the inflaton during reheating and a scalar lepton leads to a dynamical system that emulates the well-known forced pendulum. This is found to produce driven motion in the phase of the scalar lepton which leads to the generation of a non-zero lepton number density that is later redistributed to baryon number via sphaleron processes. This model successfully reproduces the observed baryon asymmetry, while simultaneously providing an origin for neutrino masses via the seesaw mechanism.Comment: 14 pages, no figures; minor revision to match PL

    Universality of Brunnian (NN-body Borromean) four and five-body systems

    Full text link
    We compute binding energies and root mean square radii for weakly bound systems of N=4N=4 and 55 identical bosons. Ground and first excited states of an NN-body system appear below the threshold for binding the system with N1N-1 particles. Their root mean square radii approach constants in the limit of weak binding. Their probability distributions are on average located in non-classical regions of space which result in universal structures. Radii decrease with increasing particle number. The ground states for more than five particles are probably non-universal whereas excited states may be universal

    Phase-coherent repetition rate multiplication of a mode-locked laser from 40 MHz to 1 GHz by injection locking

    Full text link
    We have used injection locking to multiply the repetition rate of a passively mode-locked femtosecond fiber laser from 40 MHz to 1 GHz while preserving optical phase coherence between the master laser and the slave output. The system is implemented almost completely in fiber and incorporates gain and passive saturable absorption. The slave repetition rate is set to a rational harmonic of the master repetition rate, inducing pulse formation at the least common multiple of the master and slave repetition rates

    Critical currents in Josephson junctions with macroscopic defects

    Full text link
    The critical currents in Josephson junctions of conventional superconductors with macroscopic defects are calculated for different defect critical current densities as a function of the magnetic field. We also study the evolution of the different modes with the defect position, at zero external field. We study the stability of the solutions and derive simple arguments, that could help the defect characterization. In most cases a reentrant behavior is seen, where both a maximum and a minimum current exist.Comment: 17 pages with 16 figures, submitted to Supercond. Sci. Techno

    On-demand single-photon state generation via nonlinear absorption

    Full text link
    We propose a method for producing on-demand single-photon states based on collision-induced exchanges of photons and unbalanced linear absorption between two single-mode light fields. These two effects result in an effective nonlinear absorption of photons in one of the modes, which can lead to single photon states. A quantum nonlinear attenuator based on such a mechanism can absorb photons in a normal input light pulse and terminate the absorption at a single-photon state. Because the output light pulses containing single photons preserve the properties of the input pulses, we expect this method to be a means for building a highly controllable single photon source.Comment: 5 pages, 2 figures, to appear in PRA. To be published in PR
    corecore