92 research outputs found

    Inference of the chromospheric magnetic field configuration of solar plage using the Ca II 8542 {\AA} line

    Full text link
    It has so far proven impossible to reproduce all aspects of the solar plage chromosphere in quasi-realistic numerical models. The magnetic field configuration in the lower atmosphere is one of the few free parameters in such simulations. The literature only offers proxy-based estimates of the field strength, as it is difficult to obtain observational constraints in this region. Sufficiently sensitive spectro-polarimetric measurements require a high signal-to-noise ratio, spectral resolution, and cadence, which are at the limit of current capabilities. We use critically sampled spectro-polarimetric observations of the \cair line obtained with the CRISP instrument of the Swedish 1-m Solar Telescope to study the strength and inclination of the chromospheric magnetic field of a plage region. This will provide direct physics-based estimates of these values, which could aid modelers to put constraints on plage models. We increased the signal-to-noise ratio of the data by applying several methods including deep learning and PCA. We estimated the noise level to be 1⋅10−3Ic1\cdot10^{-3} I_c. We then used STiC, a non-local thermodynamic equilibrium (NLTE) inversion code to infer the atmospheric structure and magnetic field pixel by pixel. We are able to infer the magnetic field strength and inclination for a plage region and for fibrils in the surrounding canopy. In the plage we report an absolute field strength of ∣B∣=440±90|B| =440 \pm 90 G, with an inclination of 10∘±16∘10^\circ \pm 16^\circ with respect to the local vertical. This value for ∣B∣|B| is roughly double of what was reported previously, while the inclination matches previous studies done in the photosphere. In the fibrillar region we found ∣B∣=300±50|B| = 300 \pm 50 G, with an inclination of 50∘±13∘50^\circ \pm 13^\circ.Comment: Accepted September 22t

    Magnetic fields of opposite polarity in sunspot penumbrae

    Full text link
    Context. A significant part of the penumbral magnetic field returns below the surface in the very deep photosphere. For lines in the visible, a large portion of this return field can only be detected indirectly by studying its imprints on strongly asymmetric and three-lobed Stokes V profiles. Infrared lines probe a narrow layer in the very deep photosphere, providing the possibility of directly measuring the orientation of magnetic fields close to the solar surface. Aims. We study the topology of the penumbral magnetic field in the lower photosphere, focusing on regions where it returns below the surface. Methods. We analyzed 71 spectropolarimetric datasets from Hinode and from the GREGOR infrared spectrograph. We inferred the quality and polarimetric accuracy of the infrared data after applying several reduction steps. Techniques of spectral inversion and forward synthesis were used to test the detection algorithm. We compared the morphology and the fractional penumbral area covered by reversed-polarity and three-lobed Stokes V profiles for sunspots at disk center. We determined the amount of reversed-polarity and three-lobed Stokes V profiles in visible and infrared data of sunspots at various heliocentric angles. From the results, we computed center-to-limb variation curves, which were interpreted in the context of existing penumbral models. Results. Observations in visible and near-infrared spectral lines yield a significant difference in the penumbral area covered by magnetic fields of opposite polarity. In the infrared, the number of reversed-polarity Stokes V profiles is smaller by a factor of two than in the visible. For three-lobed Stokes V profiles the numbers differ by up to an order of magnitude.Comment: 11 pages 10 figures plus appendix (2 pages 3 figures). Accepted as part of the A&A special issue on the GREGOR solar telescop

    Spectropolarimetric observations of an arch filament system with the GREGOR solar telescope

    Full text link
    Arch filament systems occur in active sunspot groups, where a fibril structure connects areas of opposite magnetic polarity, in contrast to active region filaments that follow the polarity inversion line. We used the GREGOR Infrared Spectrograph (GRIS) to obtain the full Stokes vector in the spectral lines Si I 1082.7 nm, He I 1083.0 nm, and Ca I 1083.9 nm. We focus on the near-infrared calcium line to investigate the photospheric magnetic field and velocities, and use the line core intensities and velocities of the helium line to study the chromospheric plasma. The individual fibrils of the arch filament system connect the sunspot with patches of magnetic polarity opposite to that of the spot. These patches do not necessarily coincide with pores, where the magnetic field is strongest. Instead, areas are preferred not far from the polarity inversion line. These areas exhibit photospheric downflows of moderate velocity, but significantly higher downflows of up to 30 km/s in the chromospheric helium line. Our findings can be explained with new emerging flux where the matter flows downward along the fieldlines of rising flux tubes, in agreement with earlier results.Comment: Proceedings 12th Potsdam Thinkshop to appear in Astronomische Nachrichte

    Photospheric Magnetic Fields of the Trailing Sunspots in Active Region NOAA 12396

    Full text link
    The solar magnetic field is responsible for all aspects of solar activity. Sunspots are the main manifestation of the ensuing solar activity. Combining high-resolution and synoptic observations has the ambition to provide a comprehensive description of the sunspot growth and decay processes. Active region NOAA 12396 emerged on 2015 August 3 and was observed three days later with the 1.5-meter GREGOR solar telescope on 2015 August 6. High-resolution spectropolarimetric data from the GREGOR Infrared Spectrograph (GRIS) are obtained in the photospheric Si I λ\lambda 1082.7 nm and Ca I λ\lambda1083.9 nm lines, together with the chromospheric He I λ\lambda1083.0 nm triplet. These near-infrared spectropolarimetric observations were complemented by synoptic line-of-sight magnetograms and continuum images of the Helioseismic and Magnetic Imager (HMI) and EUV images of the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO).Comment: 4 pages, 2 figures, to be published in "Solar Polarization Workshop 8", ASP Proceedings, Luca Belluzzi (eds.

    A study of the capabilities for inferring atmospheric information from high-spatial-resolution simulations

    Get PDF
    In this work, we study the accuracy that can be achieved when inferring the atmospheric information from realistic numerical magneto-hydrodynamic simulations that reproduce the spatial resolution we will obtain with future observations made by the 4m class telescopes DKIST and EST. We first study multiple inversion configurations using the SIR code and the Fe I transitions at 630 nm until we obtain minor differences between the input and the inferred atmosphere in a wide range of heights. Also, we examine how the inversion accuracy depends on the noise level of the Stokes profiles. The results indicate that when the majority of the inverted pixels come from strongly magnetised areas, there are almost no restrictions in terms of the noise, obtaining good results for noise amplitudes up to 1×10−3\times10^{-3} of IcI_c. At the same time, the situation is different for observations where the dominant magnetic structures are weak, and noise restraints are more demanding. Moreover, we find that the accuracy of the fits is almost the same as that obtained without noise when the noise levels are on the order of 1×10−4\times10^{-4}of IcI_c. We, therefore, advise aiming for noise values on the order of or lower than 5×10−4\times10^{-4} of IcI_c if observers seek reliable interpretations of the results for the magnetic field vector reliably. We expect those noise levels to be achievable by next-generation 4m class telescopes thanks to an optimised polarisation calibration and the large collecting area of the primary mirror.Comment: 14 pages, 13 figure

    Dissecting the long-term emission behaviour of the BL Lac object Mrk 421

    Get PDF
    We report on long-term multiwavelengthmonitoring of blazar Mrk 421 by the GLAST-AGILE Support Program of the Whole Earth Blazar Telescope (GASP-WEBT) collaboration and Steward Observatory, and by the Swift and Fermi satellites. We study the source behaviour in the period 2007–2015, characterized by several extreme flares. The ratio between the optical, X-ray and Îł -ray fluxes is very variable. The Îł -ray flux variations show a fair correlation with the optical ones starting from 2012.We analyse spectropolarimetric data and find wavelengthdependence of the polarization degree (P), which is compatible with the presence of the host galaxy, and no wavelength dependence of the electric vector polarization angle (EVPA). Optical polarimetry shows a lack of simple correlation between P and flux and wide rotations of the EVPA.We build broad-band spectral energy distributions with simultaneous near-infrared and optical data from the GASP-WEBT and ultraviolet and X-ray data from the Swift satellite. They show strong variability in both flux and X-ray spectral shape and suggest a shift of the synchrotron peak up to a factor of ∌50 in frequency. The interpretation of the flux and spectral variability is compatible with jet models including at least two emitting regions that can change their orientation with respect to the line of sight.http://10.0.4.69/mnras/stx2185Accepted manuscrip

    Eyes Are Windows to the Chinese Soul: Evidence from the Detection of Real and Fake Smiles

    Get PDF
    How do people interpret the meaning of a smile? Previous studies with Westerners have found that both the eyes and the mouth are crucial in identifying and interpreting smiles, yet less is known about Easterners. Here we reported that when asking the Chinese to judge the Duchenne and non-Duchenne smiles as either real or fake, their accuracy and sensitivity were negatively correlated with their individualism scores but positively correlated with their collectivism scores. However, such correlations were found only for participants who stated the eyes to be the most useful references, but not for those who favored the mouth. Moreover, participants who favored the eyes were more accurate and sensitive than those who favored the mouth. Our results thus indicate that Chinese who follow the typical Eastern decoding process of using the eyes as diagnostic cues to identify and interpret others' facial expressions and social intentions, are particularly accurate and sensitive, the more they self-report greater collectivistic and lower individualistic values
    • 

    corecore