1,843 research outputs found
Drop deformation in stokes flow through converging channels
This work presents an application of a direct BEM formulation for drop
deformation and interaction in Stokes flows through converging channels. Parametric
studies are conducted to investigate the effect, on drop deformation, of the channel’s
convergence ratio, the drop-fluid viscosity ratio, the interfacial tension and the initial
relative position of the drops
On kinetic energy stabilized superconductivity in cuprates
The possibility of kinetic energy driven superconductivity in cuprates as was
recently found in the model is discussed. We argue that the violation of
the virial theorem implied by this result is serious and means that the
description of superconductivity within the model is pathological.Comment: 3 pages, v2 includes additional reference
Multi-focal laser surgery: cutting enhancement by hydrodynamic interactions between cavitation bubbles
Transparent biological tissues can be precisely dissected with ultrafast
lasers using optical breakdown in the tight focal zone. Typically, tissues are
cut by sequential application of pulses, each of which produces a single
cavitation bubble. We investigate the hydrodynamic interactions between
simultaneous cavitation bubbles originating from multiple laser foci.
Simultaneous expansion and collapse of cavitation bubbles can enhance the
cutting efficiency by increasing the resulting deformations in tissue, and the
associated rupture zone. An analytical model of the flow induced by the bubbles
is presented and experimentally verified. The threshold strain of the material
rupture is measured in a model tissue. Using the computational model and the
experimental value of the threshold strain one can compute the shape of the
rupture zone in tissue resulting from application of multiple bubbles. With the
threshold strain of 0.7 two simultaneous bubbles produce a continuous cut when
applied at the distance 1.35 times greater than that required in sequential
approach. Simultaneous focusing of the laser in multiple spots along the line
of intended cut can extend this ratio to 1.7. Counter-propagating jets forming
during collapse of two bubbles in materials with low viscosity can further
extend the cutting zone - up to a factor of 1.54.Comment: 16 pages, 8 figures. Paper is accepted for publication in Physical
Review
X-ray Properties of Radio-Selected Dual Active Galactic Nuclei
Merger simulations predict that tidally induced gas inflows can trigger
kpc-scale dual active galactic nuclei (dAGN) in heavily obscured environments.
Previously with the Very Large Array, we have confirmed four dAGN with
redshifts between and projected separations between 4.3 and
9.2 kpc in the SDSS Stripe 82 field. Here, we present X-ray
observations that spatially resolve these dAGN and compare their
multi-wavelength properties to those of single AGN from the literature. We
detect X-ray emission from six of the individual merger components and obtain
upper limits for the remaining two. Combined with previous radio and optical
observations, we find that our dAGN have properties similar to nearby
low-luminosity AGN, and they agree well with the black hole fundamental plane
relation. There are three AGN-dominated X-ray sources, whose X-ray
hardness-ratio derived column densities show that two are unobscured and one is
obscured. The low obscured fraction suggests these dAGN are no more obscured
than single AGN, in contrast to the predictions from simulations. These three
sources show an apparent X-ray deficit compared to their mid-infrared continuum
and optical [OIII] line luminosities, suggesting higher levels of obscuration,
in tension with the hardness-ratio derived column densities. Enhanced
mid-infrared and [OIII] luminosities from star formation may explain this
deficit. There is ambiguity in the level of obscuration for the remaining five
components since their hardness ratios may be affected by non-nuclear X-ray
emissions, or are undetected altogether. They require further observations to
be fully characterized.Comment: 11 pages, 5 figures, Accepted for publication in the Astrophysical
Journa
Homogenization of the Equations Governing the Flow Between a Slider and a Rough Spinning Disk
We have analyzed the behavior of the flow between a slider bearing and a hard-drive magnetic disk under two types of surface roughness. For both cases the length scale of the roughness along the surface is small as compared to the scale of the slider, so that a homogenization of the governing equations was performed.
For the case of longitudinal roughness, we derived a one-dimensional lubrication-type equation for the leading behavior of the pressure in the direction parallel to the velocity of the disk. The coefficients of the equation are determined by solving linear elliptic equations on a domain bounded by the gap height in the vertical direction and the period of the roughness in the span-wise direction.
For the case of transverse roughness the unsteady lubrication equations were reduced, following a multiple scale homogenization analysis, to a steady equation for the leading behavior of the pressure in the gap. The reduced equation involves certain averages of the gap height, but retains the same form of the usual steady, compressible lubrication equations.
Numerical calculations were performed for both cases, and the solution for the case of transverse roughness was shown be in excellent agreement with a corresponding numerical calculation of the original unsteady equations
Electrostatics of Gapped and Finite Surface Electrodes
We present approximate methods for calculating the three-dimensional electric
potentials of finite surface electrodes including gaps between electrodes, and
estimate the effects of finite electrode thickness and an underlying dielectric
substrate. As an example we optimize a radio-frequency surface-electrode ring
ion trap, and find that each of these factors reduces the trapping secular
frequencies by less than 5% in realistic situations. This small magnitude
validates the usual assumption of neglecting the influences of gaps between
electrodes and finite electrode extent.Comment: 9 pages, 9 figures (minor changes
Measurement of the Integrated Faraday Rotations of BL Lac Objects
We present the results of multi-frequency polarization VLA observations of
radio sources from the complete sample of northern, radio-bright BL Lac objects
compiled by H. Kuhr and G. Schmidt. These were used to determine the integrated
rotation measures of 18 objects, 15 of which had never been measured
previously, which hindered analysis of the intrinsic polarization properties of
objects in the complete sample. These measurements make it possible to correct
the observed orientations of the linear polarizations of these sources for the
effect of Faraday rotation. The most probable origin for Faraday rotation in
these objects is the Galactic interstellar medium. The results presented
complete measurements of the integrated rotation measures for all 34 sources in
the complete sample of BL Lac objects.Comment: 9 pages, 7 figure
Direct numerical simulation of the near-field dynamics of annular gas-liquid two-phase jets
Copyright © 2009 American Institute of Physics.Direct numerical simulation has been used to examine the near-field dynamics of annular gas-liquid two-phase jets. Based on an Eulerian approach with mixed fluid treatment, combined with an adapted volume of fluid method and a continuum surface force model, a mathematical formulation for the flow system is presented. The swirl introduced at the jet nozzle exit is based on analytical inflow conditions. Highly accurate numerical methods have been utilized for the solution of the compressible, unsteady, Navier–Stokes equations. Two computational cases of gas-liquid two-phase jets including swirling and nonswirling cases have been performed to investigate the effects of swirl on the flow field. In both cases the flow is more vortical at the downstream locations. The swirling motion enhances both the flow instability resulting in a larger liquid spatial dispersion and the mixing resulting in a more homogeneous flow field with more evenly distributed vorticity at the downstream locations. In the annular nonswirling case, a geometrical recirculation zone adjacent to the jet nozzle exit was observed. It was identified that the swirling motion is responsible for the development of a central recirculation zone, and the geometrical recirculation zone can be overwhelmed by the central recirculation zone leading to the presence of the central recirculation region only in the swirling gas-liquid case. Results from a swirling gas jet simulation were also included to examine the effect of the liquid sheet on the flow physics. The swirling gas jet developed a central recirculation region, but it did not develop a precessing vortex core as the swirling gas-liquid two-phase jet. The results indicate that a precessing vortex core can exist at relatively low swirl numbers in the gas-liquid two-phase flow. It was established that the liquid greatly affects the precession and the swirl number alone is an insufficient criterion for the development of a precessing vortex core.EPSR
A Kiloparsec-Scale Binary Active Galactic Nucleus Confirmed by the Expanded Very Large Array
We report the confirmation of a kpc-scale binary active galactic nucleus
(AGN) with high-resolution radio images from the Expanded Very Large Array
(EVLA). SDSS J150243.1+111557 is a double-peaked [O III] AGN at z = 0.39
selected from the Sloan Digital Sky Survey. Our previous near-infrared adaptive
optics imaging reveals two nuclei separated by 1.4" (7.4 kpc), and our optical
integral-field spectroscopy suggests that they are a type-1--type-2 AGN pair.
However, these data alone cannot rule out the single AGN scenario where the
narrow emission-line region associated with the secondary is photoionized by
the broad-line AGN in the primary. Our new EVLA images at 1.4, 5.0, and 8.5 GHz
show two steep-spectrum compact radio sources spatially coincident with the
optical nuclei. The radio power of the type-2 AGN is an order-of-magnitude in
excess of star-forming galaxies with similar extinction-corrected [O II] 3727
luminosities, indicating that the radio emission is powered by accretion.
Therefore, SDSS J150243.1+111557 is one of the few confirmed kpc-scale binary
AGN systems. Spectral-energy-distribution modeling shows that SDSS
J150243.1+111557 is a merger of two ~10^{11} M_sun galaxies. With both black
hole masses around 10^8 Msun, the AGNs are accreting at ~10 times below the
Eddington limit.Comment: ApJL accepted. 6 pages, 3 figures, 1 tabl
- …
