69 research outputs found

    Thermal Perceptual Thresholds are typical in Autism Spectrum Disorder but Strongly Related to Intra-individual Response Variability

    Get PDF
    Individuals with autism spectrum disorder (ASD) are often reported to exhibit an apparent indifference to pain or temperature. Leading models suggest that this behavior is the result of elevated perceptual thresholds for thermal stimuli, but data to support these assertions are inconclusive. An alternative proposal suggests that the sensory features of ASD arise from increased intra-individual perceptual variability. In this study, we measured method-of-limits warm and cool detection thresholds in 142 individuals (83 with ASD, 59 with typical development [TD], aged 7–54 years), testing relationships with diagnostic group, demographics, and clinical measures. We also investigated the relationship between detection thresholds and a novel measure of intra-individual (trial-to-trial) threshold variability, a putative index of “perceptual noise.” This investigation found no differences in thermal detection thresholds between individuals with ASD and typical controls, despite large differences between groups in sensory reactivity questionnaires and modest group differences in intra-individual variability. Lower performance IQ, male sex, and higher intra-individual variability in threshold estimates were the most significant predictors of elevated detection thresholds. Although no psychophysical measure was significantly correlated with questionnaire measures of sensory hyporeactivity, large intra-individual variability may partially explain the elevated psychophysical thresholds seen in a subset of the ASD population

    Examining the Latent Structure and Correlates of Sensory Reactivity in Autism: A Multi-Site Integrative Data Analysis by the Autism Sensory Research Consortium

    Get PDF
    BACKGROUND: Differences in responding to sensory stimuli, including sensory hyperreactivity (HYPER), hyporeactivity (HYPO), and sensory seeking (SEEK) have been observed in autistic individuals across sensory modalities, but few studies have examined the structure of these supra-modal traits in the autistic population. METHODS: Leveraging a combined sample of 3868 autistic youth drawn from 12 distinct data sources (ages 3-18 years and representing the full range of cognitive ability), the current study used modern psychometric and meta-analytic techniques to interrogate the latent structure and correlates of caregiver-reported HYPER, HYPO, and SEEK within and across sensory modalities. Bifactor statistical indices were used to both evaluate the strength of a general response pattern factor for each supra-modal construct and determine the added value of modality-specific response pattern scores (e.g., Visual HYPER). Bayesian random-effects integrative data analysis models were used to examine the clinical and demographic correlates of all interpretable HYPER, HYPO, and SEEK (sub)constructs. RESULTS: All modality-specific HYPER subconstructs could be reliably and validly measured, whereas certain modality-specific HYPO and SEEK subconstructs were psychometrically inadequate when measured using existing items. Bifactor analyses supported the validity of a supra-modal HYPER construct (ω LIMITATIONS: Conclusions may not be generalizable beyond the specific pool of items used in the current study, which was limited to caregiver report of observable behaviors and excluded multisensory items that reflect many real-world sensory experiences. CONCLUSION: Of the three sensory response patterns, only HYPER demonstrated sufficient evidence for valid interpretation at the supra-modal level, whereas supra-modal HYPO/SEEK constructs demonstrated substantial psychometric limitations. For clinicians and researchers seeking to characterize sensory reactivity in autism, modality-specific response pattern scores may represent viable alternatives that overcome many of these limitations

    Region-specific elevations of glutamate + glutamine correlate with the sensory symptoms of autism spectrum disorders

    No full text
    Individuals on the autism spectrum are often reported as being hyper- and/or hyporeactive to sensory input. These sensory symptoms were one of the key observations that led to the development of the altered excitation-inhibition (E-I) model of autism, which posits that an increase ratio of excitatory to inhibitory signaling may explain certain phenotypical expressions of autism spectrum disorders (ASD). While there has been strong support for the altered E-I model of autism, much of the evidence has come from animal models. With regard to in-vivo human studies, evidence for altered E-I balance in ASD come from studies adopting magnetic resonance spectroscopy (MRS). Spectral-edited MRS can be used to provide measures of the levels of GABA + (GABA + macromolecules) and Glx (glutamate + glutamine) in specific brain regions as proxy markers of inhibition and excitation respectively. In the current study, we found region-specific elevations of Glx in the primary sensorimotor cortex (SM1) in ASD. There were no group differences of GABA+ in either the SM1 or thalamus. Higher levels of Glx were associated with more parent reported difficulties of sensory hyper- and hyporeactivity, as well as reduced feed-forward inhibition during tactile perception in children with ASD. Critically, the finding of elevated Glx provides strong empirical support for increased excitation in ASD. Our results also provide a clear link between Glx and the sensory symptoms of ASD at both behavioral and perceptual levels
    • …
    corecore