1,393 research outputs found
Ab initio study of magnetism at the TiO2/LaAlO3 interface
In this paper we study the possible relation between the electronic and
magnetic structure of the TiO2/LaAlO3 interface and the unexpected magnetism
found in undoped TiO2 films grown on LaAlO. We concentrate on the role
played by structural relaxation and interfacial oxygen vacancies.
LaAlO3 has a layered structure along the (001) direction with alternating LaO
and AlO2 planes, with nominal charges of +1 and -1, respectively. As a
consequence of that, an oxygen deficient TiO2 film with anatase structure will
grow preferently on the AlO2 surface layer. We have therefore performed
ab-initio calculations for superlattices with TiO2/AlO2 interfaces with
interfacial oxygen vacancies. Our main results are that vacancies lead to a
change in the valence state of neighbour Ti atoms but not necessarily to a
magnetic solution and that the appearance of magnetism depends also on
structural details, such as second neighbor positions. These results are
obtained using both the LSDA and LSDA+U approximations.Comment: Accepted for publication in Journal of Materials Scienc
Visualising data stories together: Reflections on data journalism education from the Bournemouth University Datalabs Project.
Many-body theory of the quantum mirage
In recent scanning tunneling microscopy experiments, confinement in an
elliptical corral has been used to project the Kondo effect from one focus to
the other one. I solve the Anderson model at arbitrary temperatures, for an
impurity hybridized with eigenstates of an elliptical corral, each of which has
a resonant level width delta. This width is crucial. If delta < 20 meV, the
Kondo peak disappears, while if delta > 80 meV, the mirage disappears. For
particular conditions, a stronger mirage with the impurity out of the foci is
predicted.Comment: 5 pages, 5 figures. Some clarifications of the method added, and a
reference included to show that the hybridization of the impurity with bulk
states can be neglecte
Human bony labyrinth is an indicator of population history and dispersal from Africa.
The dispersal of modern humans from Africa is now well documented with genetic data that track population history, as well as gene flow between populations. Phenetic skeletal data, such as cranial and pelvic morphologies, also exhibit a dispersal-from-Africa signal, which, however, tends to be blurred by the effects of local adaptation and in vivo phenotypic plasticity, and that is often deteriorated by postmortem damage to skeletal remains. These complexities raise the question of which skeletal structures most effectively track neutral population history. The cavity system of the inner ear (the so-called bony labyrinth) is a good candidate structure for such analyses. It is already fully formed by birth, which minimizes postnatal phenotypic plasticity, and it is generally well preserved in archaeological samples. Here we use morphometric data of the bony labyrinth to show that it is a surprisingly good marker of the global dispersal of modern humans from Africa. Labyrinthine morphology tracks genetic distances and geography in accordance with an isolation-by-distance model with dispersal from Africa. Our data further indicate that the neutral-like pattern of variation is compatible with stabilizing selection on labyrinth morphology. Given the increasingly important role of the petrous bone for ancient DNA recovery from archaeological specimens, we encourage researchers to acquire 3D morphological data of the inner ear structures before any invasive sampling. Such data will constitute an important archive of phenotypic variation in present and past populations, and will permit individual-based genotype-phenotype comparisons
Oxidative injury of the pulmonary circulation in the perinatal period: Short- and long-term consequences for the human cardiopulmonary system
Development of the pulmonary circulation is a complex process with a spatial pattern that is tightly controlled. This process is vulnerable for disruption by various events in the prenatal and early postnatal periods. Disruption of normal pulmonary vascular development leads to abnormal structure and function of the lung vasculature, causing neonatal pulmonary vascular diseases. Premature babies are especially at risk of the development of these diseases, including persistent pulmonary hypertension and bronchopulmonary dysplasia. Reactive oxygen species play a key role in the pathogenesis of neonatal pulmonary vascular diseases and can be caused by hyperoxia, mechanical ventilation, hypoxia, and inflammation. Besides the well-established short-term consequences, exposure of the developing lung to injurious stimuli in the perinatal period, including oxidative stress, may also contribute to the development of pulmonary vascular diseases later in life, through so-called ‘‘fetal or perinatal programming.’’ Because of these long-term consequences, it is important to develop a follow-up program tailored to adolescent survivors of neonatal pulmonary vascular diseases, aimed at early detection of adult pulmonary vascular diseases, and thereby opening the possibility of early intervention and interfering with disease progression. This review focuses on pathophysiologic events in the perinatal period that have been shown to disrupt human normal pulmonary vascular development, leading to neonatal pulmonary vascular diseases that can extend even into adulthood. This knowledge may be particularly important for expremature adults who are at risk of the long-term consequences of pulmonary vascular diseases, thereby contributing disproportionately to the burden of adult cardiovascular disease in the future
Interaction between Kondo impurities in a quantum corral
We calculate the spectral densities for two impurities inside an elliptical
quantum corral using exact diagonalization in the relevant Hilbert subspace and
embedding into the rest of the system. For one impurity, the space and energy
dependence of the change in differential conductance observed
in the quantum mirage experiment is reproduced. In presence of another
impurity, is very sensitive to the hybridization between
impurity and bulk. The impurities are correlated ferromagnetically between
them. A hopping eV between impurities destroy the Kondo
resonance.Comment: 4 pages, 4 figure
Molecular dynamics study of the fragmentation of silicon doped fullerenes
Tight binding molecular dynamics simulations, with a non orthogonal basis
set, are performed to study the fragmentation of carbon fullerenes doped with
up to six silicon atoms. Both substitutional and adsorbed cases are considered.
The fragmentation process is simulated starting from the equilibrium
configuration in each case and imposing a high initial temperature to the
atoms. Kinetic energy quickly converts into potential energy, so that the
system oscillates for some picoseconds and eventually breaks up. The most
probable first event for substituted fullerenes is the ejection of a C2
molecule, another very frequent event being that one Si atom goes to an
adsorbed position. Adsorbed Si clusters tend to desorb as a whole when they
have four or more atoms, while the smaller ones tend to dissociate and
sometimes interchange positions with the C atoms. These results are compared
with experimental information from mass abundance spectroscopy and the products
of photofragmentation.Comment: Seven two-column pages, six postscript figures. To be published in
Physical Review
Observations and Numerical Simulations of Subrotor Vortices during T-REX
High-resolution observations from scanning Doppler and aerosol lidars, wind profiler radars, as well as surface and aircraft measurements during the Terrain-induced Rotor Experiment (T-REX) provide the first comprehensive documentation of small-scale intense vortices associated with atmospheric rotors that form in the lee of mountainous terrain. Although rotors are already recognized as potential hazards for aircraft, it is proposed that these small-scale vortices, or subrotors, are the most dangerous features because of strong wind shear and the transient nature of the vortices. A life cycle of a subrotor event is captured by scanning Doppler and aerosol lidars over a 5-min period. The lidars depict an amplifying vortex, with a characteristic length scale of ∼500–1000 m, that overturns and intensifies to a maximum spanwise vorticity greater than 0.2 s−1. Radar wind profiler observations document a series of vortices, characterized by updraft/downdraft couplets and regions of enhanced reversed flow, that are generated in a layer of strong vertical wind shear and subcritical Richardson number. The observations and numerical simulations reveal that turbulent subrotors occur most frequently along the leading edge of an elevated sheet of horizontal vorticity that is a manifestation of boundary layer shear and separation along the lee slopes. As the subrotors break from the vortex sheet, intensification occurs through vortex stretching and in some cases tilting processes related to three-dimensional turbulent mixing. The subrotors and ambient vortex sheet are shown to intensify through a modest increase in the upstream inversion strength, which illustrates the predictability challenges for the turbulent characterization of rotors
Theory of Spin-Resolved Auger-Electron Spectroscopy from Ferromagnetic 3d-Transition Metals
CVV Auger electron spectra are calculated for a multi-band Hubbard model
including correlations among the valence electrons as well as correlations
between core and valence electrons. The interest is focused on the
ferromagnetic 3d-transition metals. The Auger line shape is calculated from a
three-particle Green function. A realistic one-particle input is taken from
tight-binding band-structure calculations. Within a diagrammatic approach we
can distinguish between the \textit{direct} correlations among those electrons
participating in the Auger process and the \textit{indirect} correlations in
the rest system. The indirect correlations are treated within second-order
perturbation theory for the self-energy. The direct correlations are treated
using the valence-valence ladder approximation and the first-order perturbation
theory with respect to valence-valence and core-valence interactions. The
theory is evaluated numerically for ferromagnetic Ni. We discuss the
spin-resolved quasi-particle band structure and the Auger spectra and
investigate the influence of the core hole.Comment: LaTeX, 12 pages, 8 eps figures included, Phys. Rev. B (in press
- …
