1,189 research outputs found

    Symmetric qubits from cavity states

    Full text link
    Two-mode cavities can be prepared in quantum states which represent symmetric multi-qubit states. However, the qubits are impossible to address individually and as such cannot be independently measured or otherwise manipulated. We propose two related schemes to coherently transfer the qubits which the cavity state represents onto individual atoms, so that the qubits can then be processed individually. In particular, our scheme can be combined with the quantum cloning scheme of Simon and coworkers [C. Simon et al, PRL 84, 2993 (2000)] to allow the optimal clones which their scheme produces to be spatially separated and individually utilized.Comment: 8 pages, 4 figures, minor typographical errors correcte

    Universal Continuous Variable Quantum Computation in the Micromaser

    Full text link
    We present universal continuous variable quantum computation (CVQC) in the micromaser. With a brief history as motivation we present the background theory and define universal CVQC. We then show how to generate a set of operations in the micromaser which can be used to achieve universal CVQC. It then follows that the micromaser is a potential architecture for CVQC but our proof is easily adaptable to other potential physical systems.Comment: 12 pages, 4 figures, accepted for a presentation at the 9th International Conference on Unconventional Computation (UC10) and LNCS proceedings

    Preparation of decoherence-free, subradiant states in a cavity

    Get PDF
    The cause of decoherence in a quantum system can be traced back to the interaction with the environment. As it has been pointed out first by Dicke, in a system of N two-level atoms where each of the atoms is individually dipole coupled to the environment, there are collective, subradiant states, that have no dipole coupling to photon modes, and therefore they are expected to decay slower. This property also implies that these type of states, which form an N-1 dimensional subspace of the atomic subsytem, also decohere slower. We propose a scheme which will create such states. First the two-level atoms are placed in a strongly detuned cavity and one of the atoms, called the control atom is excited. The time evolution of the coupled atom-cavity system leads to an appropriately entangled state of the atoms. By applying subsequent laser pulses at a well defined time instant, it is possible to drive the atomic state into the subradiant, i. e., decoherence free subspace. Up to a certain average number of the photons, the result is independent of the state of the cavity. The analysis of the conditions shows that this scheme is feasible with present day techniques achieved in atom cavity interaction experiments.Comment: 5 page

    Screening of qubit from zero-temperature reservoir

    Full text link
    We suggest an application of dynamical Zeno effect to isolate a qubit in the quantum memory unit against decoherence caused by coupling with the reservoir having zero temperature. The method is based on using an auxiliary casing system that mediate the qubit-reservoir interaction and is simultaneously frequently erased to ground state. This screening procedure can be implemented in the cavity QED experiments to store the atomic and photonic qubit states.Comment: 4 pages, 5 figure

    Quantum description of light pulse scattering on a single atom in waveguides

    Get PDF
    We present a time dependent quantum calculation of the scattering of a few-photon pulse on a single atom. The photon wave packet is assumed to propagate in a transversely strongly confined geometry, which ensures strong atom-light coupling and allows a quasi 1D treatment. The amplitude and phase of the transmitted, reflected and transversely scattered part of the wave packet strongly depend on the pulse length (bandwidth) and energy. For a transverse mode size of the order of λ2\lambda^2, we find nonlinear behavior for a few photons already, or even for a single photon. In a second step we study the collision of two such wave packets at the atomic site and find striking differences between Fock state and coherent state wave packets of the same photon number.Comment: to appear in Phys. Rev.

    Detection statistics in the micromaser

    Get PDF
    We present a general method for the derivation of various statistical quantities describing the detection of a beam of atoms emerging from a micromaser. The user of non-normalized conditioned density operators and a linear master equation for the dynamics between detection events is discussed as are the counting statistics, sequence statistics, and waiting time statistics. In particular, we derive expressions for the mean number of successive detections of atoms in one of any two orthogonal states of the two-level atom. We also derive expressions for the mean waiting times between detections. We show that the mean waiting times between de- tections of atoms in like states are equivalent to the mean waiting times calculated from the uncorrelated steady state detection rates, though like atoms are indeed correlated. The mean waiting times between detections of atoms in unlike states exhibit correlations. We evaluate the expressions for various detector efficiencies using numerical integration, reporting re- sults for the standard micromaser arrangement in which the cavity is pumped by excited atoms and the excitation levels of the emerging atoms are measured. In addition, the atomic inversion and the Fano-Mandel function for the detection of de-excited atoms is calculated for compari- son to the recent experimental results of Weidinger et al. [1], which reports the first observation of trapping states.Comment: 26 pages, 11 figure

    Quantum phase transitions of light

    Full text link
    Recently, condensed matter and atomic experiments have reached a length-scale and temperature regime where new quantum collective phenomena emerge. Finding such physics in systems of photons, however, is problematic, as photons typically do not interact with each other and can be created or destroyed at will. Here, we introduce a physical system of photons that exhibits strongly correlated dynamics on a meso-scale. By adding photons to a two-dimensional array of coupled optical cavities each containing a single two-level atom in the photon-blockade regime, we form dressed states, or polaritons, that are both long-lived and strongly interacting. Our zero temperature results predict that this photonic system will undergo a characteristic Mott insulator (excitations localised on each site) to superfluid (excitations delocalised across the lattice) quantum phase transition. Each cavity's impressive photon out-coupling potential may lead to actual devices based on these quantum many-body effects, as well as observable, tunable quantum simulators. We explicitly show that such phenomena may be observable in micro-machined diamond containing nitrogen-vacancy colour centres and superconducting microwave strip-line resonators.Comment: 11 pages, 5 figures (2 in colour

    Charge Segregation, Cluster Spin-Glass and Superconductivity in La1.94Sr0.06CuO4

    Full text link
    A 63Cu and 139La NMR/NQR study of superconducting (Tc=7 K) La1.94Sr0.06CuO4 single crystal is reported. Coexistence of spin-glass and superconducting phases is found below ~5 K from 139La NMR relaxation. 63Cu and 139La NMR spectra show that, upon cooling, CuO2 planes progressively separate into two magnetic phases, one of them having enhanced antiferromagnetic correlations. These results establish the AF-cluster nature of the spin-glass. We discuss how this phase can be related to the microsegregation of mobile holes and to the possible pinning of charge-stripes.Comment: 4 pages. Modified manuscript with clarification

    Entanglement and the SU(2) phase states in atomic systems

    Get PDF
    We show that a system of 2n identical two-level atoms interacting with n cavity photons manifests entanglement and that the set of entangled states coincides with the so-called SU(2) phase states. In particular, violation of classical realism in terms of the GHZ and GHSH conditions is proved. We discuss a new property of entanglement expressed in terms of local measurements. We also show that generation of entangled states in the atom-photon systems under consideration strongly depends on the choice of initial conditions and that the parasitic influence of cavity detuning can be compensated through the use of Kerr medium.Comment: 10 pages, 1 figur
    corecore