104 research outputs found

    Performance characterisation of 42.65 Gbit/s dual-gate asynchronous digital optical regenerator using single MZM

    Get PDF
    The tolerance of a 42.65 Gbit/s dual-gate asynchronous digital optical regenerator using a single Mach-Zehnder modulator to optical signal-to-noise-ratio degradation and chromatic dispersion is experimentally demonstrated

    All-optical phase and amplitude regeneration properties of a 40 Gbit/s DPSK black-box phase sensitive amplifier

    No full text
    We experimentally study the pure amplitude and phase regeneration capabilities of a blackbox degenerate four wave mixing (FWM) based bit-rate-flexible phase sensitive amplifier (PSA) for a 40 Gbit/s differential phase-shift keyed (DPSK) signal

    Novel real-time homodyne coherent receiver using a feed-forward based carrier extraction scheme for phase modulated signals

    Get PDF
    We report a novel real-time homodyne coherent receiver based on a DPSK optical-electrical-optical (OEO) regenerator used to extract a carrier from carrier-less phase modulated signals based on feed-forward based modulation stripping. The performance of this non-DSP based coherent receiver was evaluated for 10.66Gbit/s BPSK signals. Self-homodyne coherent detection and homodyne detection with an injection-locked local oscillator laser was demonstrated. The performance was evaluated by measuring the electrical signal-to-noise (SNR) and recording the eye diagrams. Using injection-locking for the LO improves the performance and enables homodyne detection with optical injection-locking to operate with carrier-less BPSK signals without the need for polarization multiplexed pilot-tones

    Novel synchronous DPSK optical regenerator based on a feed-forward based carrier extraction scheme

    Get PDF
    We experimentally demonstrate a novel synchronous 10.66Gbit/s DPSK OEO regenerator which uses a feed-forward carrier extraction scheme with an injection-locked laser to synchronize the regenerated signal wavelength to the incoming signal wavelength. After injection-locking, a low-cost DFB laser used at the regenerator exhibited the same linewidth characteristics as the narrow line-width transmitter laser. The phase regeneration properties of the regenerator were evaluated by emulating random Gaussian phase noise applied to the DPSK signal before the regenerator using a phase modulator driven by an arbitrary waveform generator. The overall performance was evaluated in terms of electrical eye-diagrams, BER measurements, and constellation diagrams

    DPSK signal regeneration with a dual-pump nondegenerate phase-sensitive amplifier

    Get PDF
    We demonstrate, for the first time to our knowledge, regeneration of a 42.66-Gb/s differential phase-shift keyed signal using a dual-pump nondegenerate four-wave-mixing-based fiber-optic parametric amplifier. The regenerative performance of the subsystem is characterized in terms of bit-error rate against narrowband and wideband introduced noise. While a strong receiver sensitivity improvement, up to 20 dB, is noticed against narrowband noise, against quasi-random (wideband) noise we observe a regeneration of 2.7 dB

    Comparison of frequency symmetric signal generation from a BPSK input using fiber and semiconductor-based nonlinear elements

    Get PDF
    This letter compares two nonlinear media for simultaneous carrier recovery and generation of frequency symmetric signals from a 42.7-Gb/s nonreturn-to-zero binary phase-shift-keyed input by exploiting four-wave mixing in a semiconductor optical amplifier and a highly nonlinear optical fiber for use in a phase-sensitive amplifier

    All-optical signal processing in highly nonlinear fibres

    No full text
    We review our recent work demonstrating two all-optical signal processing devices using high SBS threshold alumino-silicate highly nonlinear fibers

    Electrochemical activation and inhibition of neuromuscular systems through modulation of ion concentrations with ion-selective membranes

    Get PDF
    Conventional functional electrical stimulation aims to restore functional motor activity of patients with disabilities resulting from spinal cord injury or neurological disorders. However, intervention with functional electrical stimulation in neurological diseases lacks an effective implantable method that suppresses unwanted nerve signals. We have developed an electrochemical method to activate and inhibit a nerve by electrically modulating ion concentrations in situ along the nerve. Using ion-selective membranes to achieve different excitability states of the nerve, we observe either a reduction of the electrical threshold for stimulation by up to approximately 40%, or voluntary, reversible inhibition of nerve signal propagation. This low-threshold electrochemical stimulation method is applicable in current implantable neuroprosthetic devices, whereas the on-demand nerve-blocking mechanism could offer effective clinical intervention in disease states caused by uncontrolled nerve activation, such as epilepsy and chronic pain syndromes.Massachusetts Institute of Technology. Faculty Discretionary Research FundNational Institutes of Health (U.S.) (Award UL1 RR 025758)Harvard Catalyst (Grant

    Patterns of public participation: opportunity structures and mobilization from a cross-national perspective

    Get PDF
    Purpose: The paper summarizes data from twelve countries, chosen to exhibit wide variation, on the role and place of public participation in the setting of priorities. It seeks to exhibit cross-national patterns in respect of public participation, linking those differences to institutional features of the countries concerned. Design/methodology/approach: The approach is an example of case-orientated qualitative assessment of participation practices. It derives its data from the presentation of country case studies by experts on each system. The country cases are located within the historical development of democracy in each country. Findings: Patterns of participation are widely variable. Participation that is effective through routinized institutional processes appears to be inversely related to contestatory participation that uses political mobilization to challenge the legitimacy of the priority setting process. No system has resolved the conceptual ambiguities that are implicit in the idea of public participation. Originality/value: The paper draws on a unique collection of country case studies in participatory practice in prioritization, supplementing existing published sources. In showing that contestatory participation plays an important role in a sub-set of these countries it makes an important contribution to the field because it broadens the debate about public participation in priority setting beyond the use of minipublics and the observation of public representatives on decision-making bodies
    • …
    corecore