33 research outputs found

    Automatic Identification of Inertial Sensors on the Human Body Segments

    Get PDF
    In the last few years, inertial sensors (accelerometers and gyroscopes) in combination with magnetic sensors was proven to be a suitable ambulatory alternative to traditional human motion tracking systems based on optical position measurements. While accurate full 6 degrees of freedom information is available [1], these inertial sensor systems still have some drawbacks, e.g. each sensor has to be attached to a certain predefined body segment. The goal of this project is to develop a ‘Click-On-and-Play’ ambulatory 3D human motion capture system, i.e. a set of (wireless) inertial sensors which can be placed on the human body at arbitrary positions, because they will be identified and localized automatically

    Ambulatory gait analysis in stroke patients using ultrasound and inertial sensors

    Get PDF
    Objective ambulatory assessment of movements of patients is important for an optimal recovery. In this study an ambulatory system is used for assessing gait parameters in stroke patients. Ultrasound range estimates are fused with inertial sensors using an extended Kalman filter to estimate 3D positions, velocities and orientations. For eight stroke patients step lengths and swing and stance times are calculated from a ten meter walk trial and compared to the Berg balance scale. First results show a correlation between step lengths and Berg balance scale score. However, more patients are to be measured and different activities will be investigated in the coming months

    Ambulatory Estimation of Relative Foot Positions using Ultrasound

    Get PDF
    The recording of human movement is used for biomedical applications like physical therapy and sports training. Over the last few years inertial sensors have been proven to be a useful ambulatory alternative to traditional optical systems. An example of a successful application is the instrumented shoe, which contains two 6D force/moment sensors beneath the heel and the forefoot and two inertial sensors rigidly attached to the force/moment sensors [1]. These shoes can be used for ambulatory assessment of walking kinetics and kinematics. The relative position of the feet is currently not measured directly but estimated from double integration of feet accelerations. However, this method immediately leads to large position errors (drift) when the estimated inertial accelerations are inaccurate. In this study we investigated the ambulatory estimation of the relative positions of the feet using ultrasound transducers. On one shoe we mounted a 400PT120 Air Ultrasonic Ceramic Transducer (13 mm diameter, 10 mm height, 85º beam angle) sending a 40 kHz pulse to a similar transducer on the other shoe. Using the time of flight, the distance is estimated. Under static conditions a mean error of 5.7 ±0.8 mm was obtained over a range of 5 till 75 cm [2]. From this pilot study we concluded that the distance between the feet can be estimated ambulatory using small and low-cost ultrasound transducers. Future research includes the use of multiple transducers on each foot for a distance measure during different daily-life activities. Also the relative positions of the feet will be investigated by fusing the distance estimates with inertial sensor data

    Click-on-and-play human motion capture using wearable sensors

    Get PDF
    Human motion capture is often used in rehabilitation clinics for diagnostics and monitoring the effects of treatment. Traditionally, camera based systems are used. However, with these systems the measurements are restricted to a lab with expensive cameras. Motion capture outside a lab, using inertial sensors, is becoming increasingly popular to obtain insight in daily-life activity patterns. There are two main disadvantages of inertial sensor systems. Preparing the measurement system is often a complex and time consuming task. Moreover, it is prone to errors, because each sensor has to be attached to a predefined body segment. Another disadvantage is that inertial sensors cannot measure relative segment positions directly. Especially relative foot positions are very important to be estimated. Together with the center of mass, these positions can be used to assess the balance of a subject. From these two main disadvantages, the goal of this thesis was derived: Contribute to the development of a click-on- and-play human motion capture system. This should be a system in which the user attaches (clicks) the sensors to the body segments and can start measuring (play) immediately. Therefore, the following sub-goals were defined. The first goal is to develop an algorithm for the automatic identification of the body segments to which inertial sensors are attached. The second goal is to develop a new sensor system, with a minimal number of sensors, for the estimation of relative foot positions and orientations and the assessment of balance during gait. The first goal is addressed in chapters 2 and 3. Chapter 2 presents a method for the automatic identification of body segments on which inertial sensors are positioned. This identification is performed on the basis of a walking trial, assuming the use of a known sensor configuration. Using this method it is possible to distinguish left and right segments. Cross correlations of signals from different measurement units were used and the features were ranked. A decision tree was used for classification of the body segments. When using a full-body configuration (17 different sensor locations), 97.5% of the sensors were correctly classified. Chapter 3 presents a method that identifies the location of a sensor, without making assumptions about the applied sensor configuration or the activity the user is performing. For a full-body configuration 83.3% of the sensor locations were correctly classified. Subsequently, for each sensor location a model was developed for activity classification, resulting in a maximum accuracy of 91.7%. The second goal is addressed in the chapters 4, 5 and 6. In chapter 4, ultrasound time of flight is used to estimate the distance between the feet. This system was validated using an optical reference and showed an average error in distance estimation of 7.0 mm. In chapter 5, 3D relative foot positions are estimated by fusing ultrasound and inertial sensor data measured on the shoes in an extended Kalman filter. Step lengths and step widths were calculated and compared to an optical reference system. The mean absolute differences between the two systems were 1.7 and 1.2 cm, for step lengths and step widths, respectively. Chapter 6 describes balance and gait analysis in stroke patients using the shoe-based sensing system described in chapter 5. By combining both kinematics and kinetics, balance of the patients is assessed during gait. A margin of stability – which is the minimal distance from the extrapolated center of mass (projected on the ground) to the base of support – was defined. Both the average walking velocity, as well as the stability margins were smaller for more-affected participants. In this thesis it is shown that a click-on-and-play human motion capture system is feasible. A method is presented for the identification of body segments to which inertial sensors are attached. This will reduce errors and set-up time of wearable sensor systems. Furthermore, a gait analysis system is presented with sensors only on the feet. Not only is this system ambulant and easy to use, it is also shown to be accurate for gait analysis and balance assessment

    Click-on-and-Play human motion capture using wearable sensors

    No full text

    Feedback Regulation of the Proliferation of the Undifferentiated Spermatogonia In the Chinese Hamster By the Differentiating Spermatogonia

    No full text
    In the seminiferous epithelium the differentiating spermatogonia proliferate following a very strict synchronous pattern, and undergo the S phase during parts of particular epithelial stages. The undifferentiated spermatogonia do not divide synchronously and display maximum proliferative activity in stages XI-III. Hence the S-phase-specific cytotoxic agent Ara-C kills different proportions of these two cell types dependent on the epithelial stage. We have studied the effect of several combinations of degrees of cell loss to both compartments on proliferation of the undifferentiated spermatogonia. It was found that when the differentiating spermatogonia are removed, the proliferation of the undifferentiated spermatogonia is not inhibited at epithelial stage III, as seen in controls. However, when the undifferentiated spermatogonia were already arrested in G1, removal of the differentiating spermatogonia did not evoke proliferation again. When the population of undifferentiated spermatogonia was reduced in an area where the differentiating spermatogonia were left intact, the inhibition of the proliferation of undifferentiated spermatogonia took place around stage III as usual. It is concluded that in the normal adult seminiferous epithelium, the length of the period of active proliferation of the undifferentiated spermatogonia is regulated by negative feedback from the differentiating spermatogoni

    Automatic Identification and Localization of Inertial Sensors on the Human Body

    Get PDF
    Human motion capture is used for many purposes like sports training and rehabilitation. In the last few years, inertial sensors (accelerometers and gyroscopes) in combination with magnetic sensors was proven to be a suitable ambulatory alternative to traditional human motion tracking systems based on optical position measurements, which are restricted to a bounded area. While accurate full 6 degrees of freedom information is available, these inertial sensor systems still have some drawbacks [1, 2]. All sensors have a unique location ID, i.e. each sensor has to be attached to a certain predefined body segment, and they have to be connected by wires. Another disadvantage is the fact that the relative positions and orientations of the sensors with respect to the segments are unknown, which has to be resolved by a sensor-segment calibration procedure. These drawbacks cause the set-up time of the current systems to be relatively large

    Assessment of asymmetric leg loading before and after total hip arthroplasty using instrumented shoes

    Get PDF
    Contains fulltext : 127669.pdf (publisher's version ) (Open Access)BACKGROUND: Total hip arthroplasty is a successful surgical treatment in patients with osteoarthritis of the hip. Different questionnaires are used by the clinicians to assess functional capacity and the patient's pain, despite these questionnaires are known to be subjective. Furthermore, many studies agree that kinematic and kinetic parameters are crucial to evaluate and to provide useful information about the patient's evolution for clinicians and rehabilitation specialists. However, these quantities can currently only be obtained in a fully equipped gait laboratory. Instrumented shoes can quantify gait velocity, kinetic, kinematic and symmetry parameters. The aim of this study was to investigate whether the instrumented shoes is a sufficiently sensitive instrument to show differences in mobility performance before and after total hip arthroplasty. METHODS: In this study, patients undergoing total hip arthroplasty were measured before and 6-8 months after total hip arthroplasty. Both measurement sessions include 2 functional mobility tasks while the subject was wearing instrumented shoes. Before each measurement the Harris Hip Score and the Traditional Western Ontario and McMaster Universities osteoarthritis index were administered as well. RESULTS: The stance time and the average vertical ground reaction force measured with the instrumented shoes during walking, and their symmetry index, showed significant differences before and after total hip arthroplasty. However, the data obtained with the sit to stand test did not reveal this improvement after surgery. CONCLUSIONS: Our results show that inter-limb asymmetry during a walking activity can be evaluated with the instrumented shoes before and after total hip arthroplasty in an outpatient clinical setting
    corecore