364 research outputs found
Nuclear matter and neutron matter for improved quark mass density- dependent model with mesons
A new improved quark mass density-dependent model including u, d quarks,
mesons, mesons and mesons is presented. Employing this
model, the properties of nuclear matter, neutron matter and neutron star are
studied. We find that it can describe above properties successfully. The
results given by the new improved quark mass density- dependent model and by
the quark meson coupling model are compared.Comment: 18 pages, 7 figure
Finite Nuclei in a Relativistic Mean-Field Model with Derivative Couplings
We study finite nuclei, at the mean-field level, using the Zimanyi-Moskowski
model and one of its variations (the ZM3 model). We calculate energy levels and
ground-state properties in nuclei where the mean-field approach is reliable.
The role played by the spin-orbit potential in sorting out mean-field model
descriptions is emphasized.Comment: 17 pages, 9 figures, 30 kbytes. Uses EPSF.TEX. To appear in Zeit. f.
Phys. A (Hadrons and Nuclei
Hadrons in Dense Resonance-Matter: A Chiral SU(3) Approach
A nonlinear chiral SU(3) approach including the spin 3/2 decuplet is
developed to describe dense matter. The coupling constants of the baryon
resonances to the scalar mesons are determined from the decuplet vacuum masses
and SU(3) symmetry relations. Different methods of mass generation show
significant differences in the properties of the spin-3/2 particles and in the
nuclear equation of state.Comment: 28 pages, 9 figure
Probing the equation of state in the AGS energy range with 3-d hydrodynamics
The effect of (i) the phase transition between a quark gluon plasma (QGP) and
a hadron gas and (ii) the number of resonance degrees of freedom in the
hadronic phase on the single inclusive distributions of 16 different types of
produced hadrons for Au+Au collisions at AGS energies is studied.
We have used an exact numerical solution of the relativistic hydrodynamical
equations without free parameters which, because of its 3-d character,
constitutes a considerable improvement over the classical Landau solution.
Using two different equations of state (eos) - one containing a phase
transition from QGP to the Hadronic Phase and two versions of a purely hadronic
eos - we find that the first one gives an overall better description of the
Au+Au experimental data at energies.
We reproduce and analyse measured meson and proton spectra and also make
predictions for anti-protons, deltas, anti-deltas and hyperons. The low m_t
enhancement in pi- spectra is explained by baryon number conservation and
strangeness equilibration.
We also find that negative kaon data are more sensitive to the eos, as well
as the K-/pi- ratio. All hyperons and deltas are sensitive to the presence of a
phase transition in the forward rapidity region. Anti-protons, Omegas and heavy
anti-baryons are sensitive in the whole rapidity range.Comment: 25 pages (.tex) and 9 figures (.ps
Segmentation of Fault Networks Determined from Spatial Clustering of Earthquakes
We present a new method of data clustering applied to earthquake catalogs,
with the goal of reconstructing the seismically active part of fault networks.
We first use an original method to separate clustered events from uncorrelated
seismicity using the distribution of volumes of tetrahedra defined by closest
neighbor events in the original and randomized seismic catalogs. The spatial
disorder of the complex geometry of fault networks is then taken into account
by defining faults as probabilistic anisotropic kernels, whose structures are
motivated by properties of discontinuous tectonic deformation and previous
empirical observations of the geometry of faults and of earthquake clusters at
many spatial and temporal scales. Combining this a priori knowledge with
information theoretical arguments, we propose the Gaussian mixture approach
implemented in an Expectation-Maximization (EM) procedure. A cross-validation
scheme is then used and allows the determination of the number of kernels that
should be used to provide an optimal data clustering of the catalog. This
three-steps approach is applied to a high quality relocated catalog of the
seismicity following the 1986 Mount Lewis () event in California and
reveals that events cluster along planar patches of about 2 km, i.e.
comparable to the size of the main event. The finite thickness of those
clusters (about 290 m) suggests that events do not occur on well-defined
euclidean fault core surfaces, but rather that the damage zone surrounding
faults may be seismically active at depth. Finally, we propose a connection
between our methodology and multi-scale spatial analysis, based on the
derivation of spatial fractal dimension of about 1.8 for the set of hypocenters
in the Mnt Lewis area, consistent with recent observations on relocated
catalogs
Hydrodynamical analysis of symmetric nucleus-nucleus collisions at CERN/SPS energies
We present a coherent theoretical study of ultrarelativistic heavy-ion data
obtained at the CERN/SPS by the NA35/NA49 Collaborations using 3+1-dimensional
relativistic hydrodynamics. We find excellent agreement with the rapidity
spectra of negative hadrons and protons and with the correlation measurements
in two experiments: at 200 and at 160 (preliminary
results). Within our model this implies that for () a
quark-gluon-plasma of initial volume 174 (24 ) with a lifetime 3.4
(1.5 ) was formed. It is found that the Bose-Einstein correlation
measurements do not determine the maximal effective radii of the hadron sources
because of the large contributions from resonance decay at small momenta. Also
within this study we present an NA49 acceptance corrected two-pion
Bose-Einstein correlation function in the invariant variable, .Comment: 21 pages, 11 Postscript figures (1 File, 775654 Bytes, has to be
requested for submission via e.mail from [email protected]
Hyperons and massive neutron stars: the role of hyperon potentials
The constituents of cold dense matter are still far from being understood.
However, neutron star observations such as the recently observed pulsar PSR
J1614-2230 with a mass of 1.97+/-0.04 M_solar help to considerably constrain
the hadronic equation of state (EoS). We systematically investigate the
influence of the hyperon potentials on the stiffness of the EoS. We find that
they have but little influence on the maximum mass compared to the inclusion of
an additional vector meson mediating repulsive interaction amongst hyperons.
The new mass limit can only be reached with this additional meson regardless of
the hyperon potentials. Further, we investigate the impact of the nuclear
compression modulus and the effective mass of the nucleon at saturation density
on the high density regime of the EoS. We show that the maximum mass of purely
nucleonic stars is very sensitive to the effective nucleon mass but only very
little to the compression modulus.Comment: 24 pages, 8 figure
Phase Transitions in Warm, Asymmetric Nuclear Matter
A relativistic mean-field model of nuclear matter with arbitrary proton
fraction is studied at finite temperature. An analysis is performed of the
liquid-gas phase transition in a system with two conserved charges (baryon
number and isospin) using the stability conditions on the free energy, the
conservation laws, and Gibbs' criteria for phase equilibrium. For a binary
system with two phases, the coexistence surface (binodal) is two-dimensional.
The Maxwell construction through the phase-separation region is discussed, and
it is shown that the stable configuration can be determined uniquely at every
density. Moreover, because of the greater dimensionality of the binodal
surface, the liquid-gas phase transition is continuous (second order by
Ehrenfest's definition), rather than discontinuous (first order), as in
familiar one-component systems. Using a mean-field equation of state calibrated
to the properties of nuclear matter and finite nuclei, various phase-separation
scenarios are considered. The model is then applied to the liquid-gas phase
transition that may occur in the warm, dilute matter produced in energetic
heavy-ion collisions. In asymmetric matter, instabilities that produce a
liquid-gas phase separation arise from fluctuations in the proton concentration
(chemical instability), rather than from fluctuations in the baryon density
(mechanical instability).Comment: Postscript file, 50 pages including 23 figure
- …
