1,826 research outputs found

    Serving children: the impact of poverty on children's experiences of services

    Get PDF
    This study arose from the identification of a gap in knowledge and corresponding need for the development of a better contemporary understanding of children's experiences of poverty. Focusing on children aged 10 - 14 years, the study aimed to provide a perspective on the lives of children and young people affected by poverty in Scotland through comparing the experiences of children living in poverty with those more economically advantaged

    335 Placebo Effects In Laser‐Evoked Pain Potentials

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90215/1/S1090-3801_06_60338-8.pd

    Analysis of dropout learning regarded as ensemble learning

    Full text link
    Deep learning is the state-of-the-art in fields such as visual object recognition and speech recognition. This learning uses a large number of layers, huge number of units, and connections. Therefore, overfitting is a serious problem. To avoid this problem, dropout learning is proposed. Dropout learning neglects some inputs and hidden units in the learning process with a probability, p, and then, the neglected inputs and hidden units are combined with the learned network to express the final output. We find that the process of combining the neglected hidden units with the learned network can be regarded as ensemble learning, so we analyze dropout learning from this point of view.Comment: 9 pages, 8 figures, submitted to Conferenc

    Hemostatic Agents in Neurosurgery

    Get PDF

    Multivariate brain prediction of heart rate and skin conductance responses to social threat

    No full text
    Psychosocial stressors induce autonomic nervous system (ANS) responses in multiple body systems that are linked to health risks. Much work has focused on the common effects of stress, but ANS responses in different body systems are dissociable and may result from distinct patterns of cortical–subcortical interactions. Here, we used machine learning to develop multivariate patterns of fMRI activity predictive of heart rate (HR) and skin conductance level (SCL) responses during social threat in humans (N = 18). Overall, brain patterns predicted both HR and SCL in cross-validated analyses successfully (r(HR) = 0.54, r(SCL) = 0.58, both p < 0.0001). These patterns partly reflected central stress mechanisms common to both responses because each pattern predicted the other signal to some degree (r(HR→SCL) = 0.21 and r(SCL→HR) = 0.22, both p < 0.01), but they were largely physiological response specific. Both patterns included positive predictive weights in dorsal anterior cingulate and cerebellum and negative weights in ventromedial PFC and local pattern similarity analyses within these regions suggested that they encode common central stress mechanisms. However, the predictive maps and searchlight analysis suggested that the patterns predictive of HR and SCL were substantially different across most of the brain, including significant differences in ventromedial PFC, insula, lateral PFC, pre-SMA, and dmPFC. Overall, the results indicate that specific patterns of cerebral activity track threat-induced autonomic responses in specific body systems. Physiological measures of threat are not interchangeable, but rather reflect specific interactions among brain systems. SIGNIFICANCE STATEMENT We show that threat-induced increases in heart rate and skin conductance share some common representations in the brain, located mainly in the vmPFC, temporal and parahippocampal cortices, thalamus, and brainstem. However, despite these similarities, the brain patterns that predict these two autonomic responses are largely distinct. This evidence for largely output-measure-specific regulation of autonomic responses argues against a common system hypothesis and provides evidence that different autonomic measures reflect distinct, measurable patterns of cortical–subcortical interactions

    Bayesian log-Gaussian Cox process regression: applications to meta-analysis of neuroimaging working memory studies

    Full text link
    Working memory (WM) was one of the first cognitive processes studied with functional magnetic resonance imaging. With now over 20 years of studies on WM, each study with tiny sample sizes, there is a need for meta-analysis to identify the brain regions that are consistently activated by WM tasks, and to understand the interstudy variation in those activations. However, current methods in the field cannot fully account for the spatial nature of neuroimaging meta-analysis data or the heterogeneity observed among WM studies. In this work, we propose a fully Bayesian random-effects metaregression model based on log-Gaussian Cox processes, which can be used for meta-analysis of neuroimaging studies. An efficient Markov chain Monte Carlo scheme for posterior simulations is presented which makes use of some recent advances in parallel computing using graphics processing units. Application of the proposed model to a real data set provides valuable insights regarding the function of the WM

    Streptococcus constellatus Brain Abscess in a Middle-Aged Man With an Undiagnosed Patent Foramen Ovale

    Get PDF
    Brain abscess is a rare diagnosis. Common sources of infection include direct spread from otic sources, sinuses, or oral cavities, and hematogenous spread from distant sources, including the heart and lungs. Brain abscess with cultures growing oral flora species, in rare cases, may develop from bacteria in the oral cavity entering the bloodstream and then traveling to the brain via a patent foramen ovale. This report highlights a case of brain abscess caused by Streptococcus constellatus in a middle-aged man with an undiagnosed patent foramen ovale

    Different brain networks mediate the effects of social and conditioned expectations on pain.

    Get PDF
    Information about others' experiences can strongly influence our own feelings and decisions. But how does such social information affect the neural generation of affective experience, and are the brain mechanisms involved distinct from those that mediate other types of expectation effects? Here, we used fMRI to dissociate the brain mediators of social influence and associative learning effects on pain. Participants viewed symbolic depictions of other participants' pain ratings (social information) and classically conditioned pain-predictive cues before experiencing painful heat. Social information and conditioned stimuli each had significant effects on pain ratings, and both effects were mediated by self-reported expectations. Yet, these effects were mediated by largely separable brain activity patterns, involving different large-scale functional networks. These results show that learned versus socially instructed expectations modulate pain via partially different mechanisms-a distinction that should be accounted for by theories of predictive coding and related top-down influences

    Regional specialization within the human striatum for diverse psychological functions

    Get PDF
    Decades of animal and human neuroimaging research have identified distinct, but overlapping, striatal zones, which are interconnected with separable corticostriatal circuits, and are crucial for the organization of functional systems. Despite continuous efforts to subdivide the human striatum based on anatomical and resting-state functional connectivity, characterizing the different psychological processes related to each zone remains a work in progress. Using an unbiased, data-driven approach, we analyzed large-scale coactivation data from 5,809 human imaging studies. We (i) identified five distinct striatal zones that exhibited discrete patterns of coactivation with cortical brain regions across distinct psychological processes and (ii) identified the different psychological processes associated with each zone. We found that the reported pattern of cortical activation reliably predicted which striatal zone was most strongly activated. Critically, activation in each functional zone could be associated with distinct psychological processes directly, rather than inferred indirectly from psychological functions attributed to associated cortices. Consistent with well-established findings, we found an association of the ventral striatum (VS) with reward processing. Confirming less well-established findings, the VS and adjacent anterior caudate were associated with evaluating the value of rewards and actions, respectively. Furthermore, our results confirmed a sometimes overlooked specialization of the posterior caudate nucleus for executive functions, often considered the exclusive domain of frontoparietal cortical circuits. Our findings provide a precise functional map of regional specialization within the human striatum, both in terms of the differential cortical regions and psychological functions associated with each striatal zone
    • 

    corecore