486 research outputs found
Revolutionaries and spies on trees and unicyclic graphs
A team of {\it revolutionaries} and a team of {\it spies} play a game
on a graph . Initially, revolutionaries and then spies take positions at
vertices. In each subsequent round, each revolutionary may move to an adjacent
vertex or not move, and then each spy has the same option. The revolutionaries
want to hold an {\it unguarded meeting}, meaning revolutionaries at some
vertex having no spy at the end of a round. To prevent this forever, trivially
at least \min\{|V(G)|,\FL{r/m}\} spies are needed. When is a tree, this
many spies suffices. When is a unicyclic graph, \min\{|V(G)|,\CL{r/m}\}
spies suffice, and we characterize those unicyclic graphs where \FL{r/m}+1
spies are needed. \def\FL#1{\lfloor #1 \rfloor} \def\CL#1{\lceil #1 \rceil}Comment: 9 page
An improved lower bound for (1,<=2)-identifying codes in the king grid
We call a subset of vertices of a graph a -identifying
code if for all subsets of vertices with size at most , the sets
are distinct. The concept of
identifying codes was introduced in 1998 by Karpovsky, Chakrabarty and Levitin.
Identifying codes have been studied in various grids. In particular, it has
been shown that there exists a -identifying code in the king grid
with density 3/7 and that there are no such identifying codes with density
smaller than 5/12. Using a suitable frame and a discharging procedure, we
improve the lower bound by showing that any -identifying code of
the king grid has density at least 47/111
Direct neutron capture of 48Ca at kT = 52 keV
The neutron capture cross section of 48Ca was measured relative to the known
gold cross section at kT = 52 keV using the fast cyclic activation technique.
The experiment was performed at the Van-de-Graaff accelerator, Universitaet
Tuebingen. The new experimental result is in good agreement with a calculation
using the direct capture model. The 1/v behaviour of the capture cross section
at thermonuclear energies is confirmed, and the adopted reaction rate which is
based on several previous experimental investigations remains unchanged.Comment: 9 pages (uses Revtex), 2 postscript figures, accepted for publication
as Brief Report in Phys. Rev.
An ergodic theorem of a parabolic Anderson model driven by Lévy noise
In this paper, we study an ergodic theorem of a parabolic Andersen model driven by Lévy noise. Under the assumption that A = (a(i, j))i,j∈S is symmetric with respect to a σ-finite measure gp, we obtain the long-time convergence to an invariant probability measure νh starting from a bounded nonnegative A-harmonic function h based on self-duality property. Furthermore, under some mild conditions, we obtain the one to one correspondence between the bounded nonnegative A-harmonic functions and the extremal invariant probability measures with finite second moment of the nonnegative solution of the parabolic Anderson model driven by Lévy noise, which is an extension of the result of Y. Liu and F. X. Yang
Measurement of neutron capture on Ca at thermal and thermonuclear energies
At the Karlsruhe pulsed 3.75\,MV Van de Graaff accelerator the thermonuclear
Ca(n,)Ca(8.72\,min) cross section was measured by the
fast cyclic activation technique via the 3084.5\,keV -ray line of the
Ca-decay. Samples of CaCO enriched in Ca by 77.87\,\% were
irradiated between two gold foils which served as capture standards. The
capture cross-section was measured at the neutron energies 25, 151, 176, and
218\,keV, respectively. Additionally, the thermal capture cross-section was
measured at the reactor BR1 in Mol, Belgium, via the prompt and decay
-ray lines using the same target material. The
Ca(n,)Ca cross-section in the thermonuclear and thermal
energy range has been calculated using the direct-capture model combined with
folding potentials. The potential strengths are adjusted to the scattering
length and the binding energies of the final states in Ca. The small
coherent elastic cross section of Ca+n is explained through the nuclear
Ramsauer effect. Spectroscopic factors of Ca have been extracted from
the thermal capture cross-section with better accuracy than from a recent (d,p)
experiment. Within the uncertainties both results are in agreement. The
non-resonant thermal and thermonuclear experimental data for this reaction can
be reproduced using the direct-capture model. A possible interference with a
resonant contribution is discussed. The neutron spectroscopic factors of
Ca determined from shell-model calculations are compared with the values
extracted from the experimental cross sections for Ca(d,p)Ca and
Ca(n,)Ca.Comment: 15 pages (uses Revtex), 7 postscript figures (uses psfig), accepted
for publication in PRC, uuencoded tex-files and postscript-files also
available at ftp://is1.kph.tuwien.ac.at/pub/ohu/Ca.u
Random Convex Hulls and Extreme Value Statistics
In this paper we study the statistical properties of convex hulls of
random points in a plane chosen according to a given distribution. The points
may be chosen independently or they may be correlated. After a non-exhaustive
survey of the somewhat sporadic literature and diverse methods used in the
random convex hull problem, we present a unifying approach, based on the notion
of support function of a closed curve and the associated Cauchy's formulae,
that allows us to compute exactly the mean perimeter and the mean area enclosed
by the convex polygon both in case of independent as well as correlated points.
Our method demonstrates a beautiful link between the random convex hull problem
and the subject of extreme value statistics. As an example of correlated
points, we study here in detail the case when the points represent the vertices
of independent random walks. In the continuum time limit this reduces to
independent planar Brownian trajectories for which we compute exactly, for
all , the mean perimeter and the mean area of their global convex hull. Our
results have relevant applications in ecology in estimating the home range of a
herd of animals. Some of these results were announced recently in a short
communication [Phys. Rev. Lett. {\bf 103}, 140602 (2009)].Comment: 61 pages (pedagogical review); invited contribution to the special
issue of J. Stat. Phys. celebrating the 50 years of Yeshiba/Rutgers meeting
Monopelopia caraguata (Chironomidae: Tanypodinae: Pentaneurini) and Phytotelmatocladius delarosai (Chironomidae: Orthocladiinae) : Two Phytotelmatous Chironomids Distributed from Florida to Argentina
Fil: Siri, Augusto. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Limnología Dr. Raúl A. Ringuelet; ArgentinaFil: Donato, Mariano. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Laboratorio de Sistemática y Biología Evolutiva; Argentin
'Education, education, education' : legal, moral and clinical
This article brings together Professor Donald Nicolson's intellectual interest in professional legal ethics and his long-standing involvement with law clinics both as an advisor at the University of Cape Town and Director of the University of Bristol Law Clinic and the University of Strathclyde Law Clinic. In this article he looks at how legal education may help start this process of character development, arguing that the best means is through student involvement in voluntary law clinics. And here he builds upon his recent article which argues for voluntary, community service oriented law clinics over those which emphasise the education of students
The iPlant Collaborative: Cyberinfrastructure for Plant Biology
The iPlant Collaborative (iPlant) is a United States National Science Foundation (NSF) funded project that aims to create an innovative, comprehensive, and foundational cyberinfrastructure in support of plant biology research (PSCIC, 2006). iPlant is developing cyberinfrastructure that uniquely enables scientists throughout the diverse fields that comprise plant biology to address Grand Challenges in new ways, to stimulate and facilitate cross-disciplinary research, to promote biology and computer science research interactions, and to train the next generation of scientists on the use of cyberinfrastructure in research and education. Meeting humanity's projected demands for agricultural and forest products and the expectation that natural ecosystems be managed sustainably will require synergies from the application of information technologies. The iPlant cyberinfrastructure design is based on an unprecedented period of research community input, and leverages developments in high-performance computing, data storage, and cyberinfrastructure for the physical sciences. iPlant is an open-source project with application programming interfaces that allow the community to extend the infrastructure to meet its needs. iPlant is sponsoring community-driven workshops addressing specific scientific questions via analysis tool integration and hypothesis testing. These workshops teach researchers how to add bioinformatics tools and/or datasets into the iPlant cyberinfrastructure enabling plant scientists to perform complex analyses on large datasets without the need to master the command-line or high-performance computational services
- …
