1,036 research outputs found
Set optimization - a rather short introduction
Recent developments in set optimization are surveyed and extended including
various set relations as well as fundamental constructions of a convex analysis
for set- and vector-valued functions, and duality for set optimization
problems. Extensive sections with bibliographical comments summarize the state
of the art. Applications to vector optimization and financial risk measures are
discussed along with algorithmic approaches to set optimization problems
Fluorescent D-amino-acids reveal bi-cellular cell wall modifications important for Bdellovibrio bacteriovorous predation
Modification of essential bacterial peptidoglycan (PG) containing cell walls can lead to antibiotic resistance, for example β-lactam resistance by L,D-transpeptidase activities. Predatory Bdellovibrio bacteriovorus are naturally antibacterial and combat infections by traversing, modifying and finally destroying walls of Gram-negative prey bacteria, modifying their own PG as they grow inside prey. Historically, these multi-enzymatic processes on two similar PG walls have proved challenging to elucidate. Here, with a PG labelling approach utilizing timed pulses of multiple fluorescent D-amino acids (FDAAs), we illuminate dynamic changes that predator and prey walls go through during the different phases of bacteria:bacteria invasion. We show formation of a reinforced circular port-hole in the prey wall; L,D-transpeptidaseBd mediated D-amino acid modifications strengthening prey PG during Bdellovibrio invasion and a zonal mode of predator-elongation. This process is followed by unconventional, multi-point and synchronous septation of the intracellular Bdellovibrio, accommodating odd- and even-numbered progeny formation by non-binary division
A meta-analysis and critical review of prospective memory in autism spectrum disorder
Prospective memory (PM) is the ability to remember to carry out a planned intention at an appropriate moment in the future. Research on PM in ASD has produced mixed results. We aimed to establish the extent to which two types of PM (event-based/time-based) are impaired in ASD. In part 1, a meta-analysis of all existing studies indicates a large impairment of time-based, but only a small impairment of event-based, PM in ASD. In Part 2, a critical review concludes that time-based PM appears diminished in ASD, in line with the meta-analysis, but that caution should be taken when interpreting event-based PM findings, given potential methodological limitations of several studies. Clinical implications and directions for future research are discussed
Green metrics in mechanochemistry
The development of new green methodologies and their broader adoption for promoting sustainable development in chemistry laboratories and industry play a significant role in society, due to the economic importance of chemistry and its widespread presence in everyday life. Therefore, a sustainable approach to chemistry contributes to the well-being of the worldwide population and complies with the United Nations Sustainable Development Goals (UN SDGs) and the European Green Deal. The review highlights how batch and continuous mechanochemical methods are an eco-friendly approach for organic synthesis, with a lower environmental footprint in most cases, compared to solution-based procedures. The assessment is objectively based on the use of green metrics (e.g., atom and real atom economy, E-factor, process mass intensity, material parameter recovery, Eco-scale, stoichiometric factor, etc.) and indicators (e.g. DOZN tool and life cycle assessment, LCA, studies) applied to organic transformations such as synthesis of the amide bond, carbamates, heterocycles, active pharmaceutical ingredients (APIs), porphyrins, porous organic polymers (POPs), metal- or acid-catalysed processes, multicomponent and condensation reactions, rearrangements, etc. The generalized absence of bulk solvents, the precise control over the stoichiometry (i.e., using agents in a stoichiometrically rather than in excess), and the more selective reactions enabling simplified work-up procedures are the distinctive factors, marking the superiority of mechanochemical processes over solution-based chemistry
Green metrics in mechanochemistry
F. G. would like to thank the support of Fundacion para el Fomento en Asturias de la Investigacion Cientıfica Aplicada y la Tecnologıa (FICYT) through the Margarita Salas Senior Program (AYUD/2021/59709) and the Ministerio de Ciencia e Innovacion through the project PID2021-127407NB-I00
Observation of the<i> B</i><sup>+</sup><sub>c</sub> → <i>J/ψ</i>π<sup>+</sup>π<sup>0</sup> decay
The frst observation of the B+c → J/ψπ+π0 decay is reported with high significance using proton-proton collision data, corresponding to an integrated luminosity of 9 fb−1, collected with the LHCb detector at centre-of-mass energies of 7, 8, and 13 TeV. The ratio ofits branching fraction relative to the B+c → J/ψπ+ channel is measured to beBB+c →J/ψπ+π0BB+c →J/ψπ+= 2.80 ± 0.15 ± 0.11 ± 0.16 ,where the first uncertainty is statistical, the second systematic and the third related to imprecise knowledge of the branching fractions for B+ → J/ψK∗+ and B+c → J/ψπ+ decays, which are used to determine the π0 detection efficiency. The π+π0 mass spectrum is found to be consistent with the dominance of an intermediate ρ+ contribution in accordance witha model based on QCD factorisation.<br/
Observation of the very rare Σ<sup>+</sup> → <sup>+</sup><sup>-</sup> decay
The first observation of the Σ+ →+− decay is reported with high significance using proton-proton collision data, corresponding to an integrated luminosity of 5.4 fb−1, collected with the LHCb detector at a center-of-mass energy of 13 TeV. A yield of 237 ± 16 Σ+ →+− decays is obtained, where the uncertainty is statistical only. A branching fraction of (1.08 ± 0.17) × 10−8 is measured, where the uncertainty includes statistical and systematic sources. No evidence of resonant structures is found in the dimuon invariant-mass distribution. All results are compatible with standard model expectations. This represents the rarest decay of a baryon ever observed
Nuclear receptor coactivator/coregulator NCoA6(NRC) is a pleiotropic coregulator involved in transcription, cell survival, growth and development
NCoA6 (also referred to as NRC, ASC-2, TRBP, PRIP and RAP250) was originally isolated as a ligand-dependent nuclear receptor interacting protein. However, NCoA6 is a multifunctional coregulator or coactivator necessary for transcriptional activation of a wide spectrum of target genes. The NCoA6 gene is amplified and overexpressed in breast, colon and lung cancers. NCoA6 is a 250 kDa protein which harbors a potent N-terminal activation domain, AD1; and a second, centrally-located activation domain, AD2, which is necessary for nuclear receptor signaling. The intrinsic activation potential of NCoA6 is regulated by its C-terminal STL regulatory domain. Near AD2 is an LxxLL-1 motif which interacts with a wide spectrum of ligand-bound NRs with high-affinity. A second LxxLL motif (LxxLL-2) located towards the C-terminal region is more restricted in its NR specificity. The potential role of NCoA6 as a co-integrator is suggested by its ability to enhance transcriptional activation of a wide variety of transcription factors and from its in vivo association with a number of known cofactors including CBP/p300. NCoA6 has been shown to associate with at least three distinct coactivator complexes containing Set methyltransferases as core polypeptides. The composition of these complexes suggests that NCoA6 may play a fundamental role in transcriptional activation by modulating chromatin structure through histone methylation. Knockout studies in mice suggest that NCoA6 is an essential coactivator. NCoA6-/- embryos die between 8.5-12.5 dpc from general growth retardation coupled with developmental defects in the heart, liver, brain and placenta. NCoA6-/- MEFs grow at a reduced rate compared to WT MEFs and spontaneously undergo apoptosis, indicating the importance of NCoA6 as a prosurvival and anti-apoptotic gene. Studies with NCoA6+/- and conditional knockout mice suggest that NCoA6 is a pleiotropic coregulator involved in growth, development, wound healing and maintenance of energy homeostasis
- …
