134 research outputs found
Indication for the coexistence of closed orbit and quantum interferometer with the same cross section in the organic metal (ET)4(H3O)[Fe(C2O4)3].C6H4Cl2: Persistence of SdH oscillations above 30 K
Shubnikov-de Haas (SdH) and de Haas-van Alphen (dHvA) oscillations spectra of
the quasi-two dimensional charge transfer salt
"-(ET)(HO)[Fe(CO)]CHCl have been
investigated in pulsed magnetic fields up to 54 T. The data reveal three basic
frequencies F, F and F, which can be interpreted on the basis
of three compensated closed orbits at low temperature. However a very weak
thermal damping of the Fourier component F, with the highest amplitude, is
evidenced for SdH spectra above about 6 K. As a result, magnetoresistance
oscillations are observed at temperatures higher than 30 K. This feature, which
is not observed for dHvA oscillations, is in line with quantum interference,
pointing to a Fermi surface reconstruction in this compound.Comment: published in Eur. Phys. J. B 71 203 (2009
Interlayer tunneling spectroscopy of graphite at high magnetic field oriented parallel to the layers
Interlayer tunneling in graphite mesa-type structures is studied at a strong
in-plane magnetic field up to 55 T and low temperature K. The
tunneling spectrum vs. has a pronounced peak at a finite voltage
. The peak position increases linearly with . To explain the
experiment, we develop a theoretical model of graphite in the crossed electric
and magnetic fields. When the fields satisfy the resonant condition
, where is the velocity of the two-dimensional Dirac electrons in
graphene, the wave functions delocalize and give rise to the peak in the
tunneling spectrum observed in the experiment.Comment: 6 pages, 6 figures; corresponds to the published version in Eur.
Phys. J. Special Topics, Proceedings of the IMPACT conference 2012,
http://lptms.u-psud.fr/impact2012
Multiple Quantum Oscillations in the de Haas van Alphen Spectra of the Underdoped High Temperature Superconductor YBa_2Cu_3O_6.5
By improving the experimental conditions and extensive data accumulation, we
have achieved very high-precision in the measurements of the de Haas-van Alphen
effect in the underdoped high-temperature superconductor
YBaCuO. We find that the main oscillation, so far believed
to be single-frequency, is composed of three closely spaced frequencies. We
attribute this to bilayer splitting and warping of a single quasi-2D Fermi
surface, indicating that \emph{c}-axis coherence is restored at low temperature
in underdoped cuprates. Our results do not support the existence of a larger
frequency of the order of 1650 T reported recently in the same compound [S.E.
Sebastian {\it et al}., Nature {\bf 454}, 200 (2008)]
Evidence for a small hole pocket in the Fermi surface of underdoped YBa2Cu3Oy
The Fermi surface of a metal is the fundamental basis from which its
properties can be understood. In underdoped cuprate superconductors, the Fermi
surface undergoes a reconstruction that produces a small electron pocket, but
whether there is another, as yet undetected portion to the Fermi surface is
unknown. Establishing the complete topology of the Fermi surface is key to
identifying the mechanism responsible for its reconstruction. Here we report
the discovery of a second Fermi pocket in underdoped YBa2Cu3Oy, detected as a
small quantum oscillation frequency in the thermoelectric response and in the
c-axis resistance. The field-angle dependence of the frequency demonstrates
that it is a distinct Fermi surface and the normal-state thermopower requires
it to be a hole pocket. A Fermi surface consisting of one electron pocket and
two hole pockets with the measured areas and masses is consistent with a
Fermi-surface reconstruction caused by the charge-density-wave order observed
in YBa2Cu3Oy, provided other parts of the reconstructed Fermi surface are
removed by a separate mechanism, possibly the pseudogap.Comment: 23 pages, 5 figure
Magnetic oscillations in a two-dimensional network of compensated electron and hole orbits
The FS of (ET)8Hg4Cl12(C6H5Br)2 can be regarded as a 2D network of
compensated electron and hole orbits coupled by magnetic breakthrough.
Simultaneous measurements of the interlayer magnetoresistance and magnetic
torque have been performed up to 28 T. Magnetoresistance and de dHvA
oscillations spectra exhibit frequency combinations typical of such a network.
Even though some of the observed magnetoresistance oscillations cannot be
interpreted on the basis of neither conventional SdH oscillations nor quantum
interference, the temperature and magnetic field (both orientation and
magnitude) dependence of all the Fourier components of the dHvA spectra can be
consistently accounted for by the LK formula. This behaviour is at variance
with that currently reported for compounds illustrating the linear chain of
coupled orbits model.Comment: accepted for publication in europhysics Letter
de Haas-van Alphen oscillations in the underdoped cuprate YBaCuO
The de Haas-van Alphen effect was observed in the underdoped cuprate
YBaCuO via a torque technique in pulsed magnetic fields up to
59 T. Above an irreversibility field of 30 T, the magnetization exhibits
clear quantum oscillations with a single frequency of 540 T and a cyclotron
mass of 1.76 times the free electron mass, in excellent agreement with
previously observed Shubnikov-de Haas oscillations. The oscillations obey the
standard Lifshitz-Kosevich formula of Fermi-liquid theory. This thermodynamic
observation of quantum oscillations confirms the existence of a well-defined,
close and coherent, Fermi surface in the pseudogap phase of cuprates.Comment: published versio
Fermi Surface of the Electron-doped Cuprate Superconductor Nd_{2-x}Ce_xCuO_{4} Probed by High-Field Magnetotransport
We report on the study of the Fermi surface of the electron-doped cuprate
superconductor NdCeCuO by measuring the interlayer
magnetoresistance as a function of the strength and orientation of the applied
magnetic field. We performed experiments in both steady and pulsed magnetic
fields on high-quality single crystals with Ce concentrations of to
0.17. In the overdoped regime of we found both semiclassical
angle-dependent magnetoresistance oscillations (AMRO) and Shubnikov-de Haas
(SdH) oscillations. The combined AMRO and SdH data clearly show that the
appearance of fast SdH oscillations in strongly overdoped samples is caused by
magnetic breakdown. This observation provides clear evidence for a
reconstructed multiply-connected Fermi surface up to the very end of the
overdoped regime at . The strength of the superlattice potential
responsible for the reconstructed Fermi surface is found to decrease with
increasing doping level and likely vanishes at the same carrier concentration
as superconductivity, suggesting a close relation between translational
symmetry breaking and superconducting pairing. A detailed analysis of the
high-resolution SdH data allowed us to determine the effective cyclotron mass
and Dingle temperature, as well as to estimate the magnetic breakdown field in
the overdoped regime.Comment: 23 pages, 8 figure
The potential for remote sensing and hydrologic modelling to assess the spatio-temporal dynamics of ponds in the Ferlo Region (Senegal)
In the Ferlo Region in Senegal, livestock depend on temporary ponds for water but are exposed to the Rift Valley Fever (RVF), a disease transmitted to herds by mosquitoes which develop in these ponds. Mosquito abundance is related to the emptying and filling phases of the ponds, and in order to study the epidemiology of RVF, pond modelling is required. In the context of a data scarce region, a simple hydrologic model which makes use of remote sensing data was developed to simulate pond water dynamics from daily rainfall. Two sets of ponds were considered: those located in the main stream of the Ferlo Valley whose hydrological dynamics are essentially due to runoff, and the ponds located outside, which are smaller and whose filling mechanisms are mainly due to direct rainfall. Separate calibrations and validations were made for each set of ponds. Calibration was performed from daily field data (rainfall, water level) collected during the 2001 and 2002 rainy seasons and from three different sources of remote sensing data: 1) very high spatial resolution optical satellite images to access pond location and surface area at given dates, 2) Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Digital Elevation Model (DEM) data to estimate pond catchment area and 3) Tropical Rainfall Measuring Mission (TRMM) data for rainfall estimates. The model was applied to all ponds of the study area, the results were validated and a sensitivity analysis was performed. Water height simulations using gauge rainfall as input were compared to water level measurements from four ponds and Nash coefficients >0.7 were obtained. Comparison with simulations using TRMM rainfall data gave mixed results, with poor water height simulations for the year 2001 and good estimations for the year 2002. A pond map derived from a Quickbird satellite image was used to assess model accuracy for simulating pond water areas for all the ponds of the study area. The validation showed that modelled water areas were mostly underestimated but significantly correlated, particularly for the larger ponds. The results of the sensitivity analysis showed that parameters relative to pond shape and catchment area estimation have less effects on model simulation than parameters relative to soil properties (rainfall threshold causing runoff in dry soils and the coefficient expressing soil moisture decrease with time) or the water loss coefficient. Overall, our results demonstrate the possibility of using a simple hydrologic model with remote sensing data to track pond water heights and water areas in a homogeneous arid area
High frequency magnetic oscillations of the organic metal -(ET)ZnBr(CHCl) in pulsed magnetic field of up to 81 T
De Haas-van Alphen oscillations of the organic metal
-(ET)ZnBr(CHCl) are studied in pulsed magnetic
fields up to 81 T. The long decay time of the pulse allows determining reliable
field-dependent amplitudes of Fourier components with frequencies up to several
kiloteslas. The Fourier spectrum is in agreement with the model of a linear
chain of coupled orbits. In this model, all the observed frequencies are linear
combinations of the frequency linked to the basic orbit and to the
magnetic-breakdown orbit .Comment: 6 pages, 4 figure
- …
