17 research outputs found
Association Study with 77 SNPs Confirms the Robust Role for the rs10830963/G of MTNR1B Variant and Identifies Two Novel Associations in Gestational Diabetes Mellitus Development
CONTEXT: Genetic variation in human maternal DNA contributes to the susceptibility for development of gestational diabetes mellitus (GDM). OBJECTIVE: We assessed 77 maternal single nucleotide gene polymorphisms (SNPs) for associations with GDM or plasma glucose levels at OGTT in pregnancy. METHODS: 960 pregnant women (after dropouts 820: case/control: m99'WHO: 303/517, IADPSG: 287/533) were enrolled in two countries into this case-control study. After genomic DNA isolation the 820 samples were collected in a GDM biobank and assessed using KASP (LGC Genomics) genotyping assay. Logistic regression risk models were used to calculate ORs according to IADPSG/m'99WHO criteria based on standard OGTT values. RESULTS: The most important risk alleles associated with GDM were rs10830963/G of MTNR1B (OR = 1.84/1.64 [IADPSG/m'99WHO], p = 0.0007/0.006), rs7754840/C (OR = 1.51/NS, p = 0.016) of CDKAL1 and rs1799884/T (OR = 1.4/1.56, p = 0.04/0.006) of GCK. The rs13266634/T (SLC30A8, OR = 0.74/0.71, p = 0.05/0.02) and rs7578326/G (LOC646736/IRS1, OR = 0.62/0.60, p = 0.001/0.006) variants were associated with lower risk to develop GDM. Carrying a minor allele of rs10830963 (MTNR1B); rs7903146 (TCF7L2); rs1799884 (GCK) SNPs were associated with increased plasma glucose levels at routine OGTT. CONCLUSIONS: We confirmed the robust association of MTNR1B rs10830963/G variant with GDM binary and glycemic traits in this Caucasian case-control study. As novel associations we report the minor, G allele of the rs7578326 SNP in the LOC646736/IRS1 region as a significant and the rs13266634/T SNP (SLC30A8) as a suggestive protective variant against GDM development. Genetic susceptibility appears to be more preponderant in individuals who meet both the modified 99'WHO and the IADPSG GDM diagnostic criteria
Insights Into the Physiology of C-peptide
Current knowledge suggests a complex role of C-peptide in human physiology, but its mechanism of action is only partially understood. The effects of C-peptide appear to be variable depending on the target tissue, physiological environment, its combination with other bioactive molecules such as insulin, or depending on its concentration. It is apparent that C-peptide has therapeutic potential for the treatment of vascular and nervous damage caused by type 1 or late type 2 diabetes mellitus. The question remains whether the effect is mediated by the receptor, the existence of which is still uncertain, or whether an alternative non-receptor-mediated mechanism is responsible. The Institute of Endocrinology in Prague has been paying much attention to the issue of C-peptide and its metabolic effect since the 1980s. The RIA methodology of human C-peptide determination was introduced here and transferred to commercial production. By long-term monitoring of C-peptide oGTT-derived indices, the Institute has contributed to elucidating the pathophysiology of glucose tolerance disorders. This review summarizes the current knowledge of C-peptide physiology and highlights the contributions of the Institute of Endocrinology to this issue.</jats:p
Specific Metabolic Characteristics of Women With Former Gestational Diabetes: the Importance of Adipose Tissue
Women with a positive history of gestational diabetes mellitus (GDM) face a higher risk of developing type 2 diabetes mellitus (T2DM) and metabolic syndrome later in life. The higher risk of these metabolic complications is closely associated with adipose tissue. In this review, the importance of adipose tissue is discussed in relation to GDM, focusing on both the quantity of fat deposits and the metabolic activity of adipose tissue in particular periods of life: neonatal age, childhood, adolescence, and pregnancy followed by nursing. Preventive measures based on body composition and lifestyle habits with special attention to the beneficial effects of breastfeeding are also discussed.</jats:p
Distinct Response of Fat and Gastrointestinal Tissue to Glucose in Gestational Diabetes Mellitus and Polycystic Ovary Syndrome
Gestational diabetes mellitus (GDM) and polycystic ovary syndrome (PCOS) are distinct pathologies with impaired insulin sensitivity as a common feature. The aim of this study was to evaluate the response of fat tissue adipokines and gastrointestinal incretins to glucose load in patients diagnosed with one of the two disorders and to compare it with healthy controls. Oral glucose tolerance test (oGTT) was performed in 77 lean young women: 22 had positive history of GDM, 19 were PCOS patients, and 36 were healthy controls. Hormones were evaluated in fasting and in 60 min intervals during the 3 h oGTT using Bio-Plex ProHuman Diabetes 10-Plex Assay for C-peptide, ghrelin, GIP, GLP1, glucagon, insulin, leptin, total PAI1, resistin, visfatin and Bio-Plex ProHuman Diabetes Adipsin and Adiponectin Assays (Bio-Rad). Despite lean body composition, both PCOS and GDM women were more insulin resistant than controls. Significant postchallenge differences between the GDM and PCOS groups were observed in secretion of adipsin, leptin, glucagon, visfatin, ghrelin, GIP, and also GLP1 with higher levels in GDM. Conversely, PCOS was associated with the highest resistin, C-peptide, and PAI1 levels. Our data suggest that decreased insulin sensitivity observed in lean women with GDM and PCOS is associated with distinct hormonal response of fat and gastrointestinal tissue to glucose load.</jats:p
The Prefix Machine – a Formal Foundation for the BORM OR Diagrams Validation and Simulation
Gestational Diabetes – Metabolic Risks of Adult Women With Respect to Birth Weight
Metabolic disorders such as obesity, insulin resistance and other components of metabolic syndrome (MetS) are connected with birth weight. Low and high birth weight is associated with a higher risk of developing type 2 diabetes mellitus, the mechanism is not clear. In this study, we evaluated the association between birth weight and anthropometric as well as biochemical components of MetS in women with a history of gestational diabetes mellitus (GDM) in comparison with control women. In part of the GDM group, we re-evaluated metabolic changes over 5-8 years. Anthropometry, blood pressure, glucose metabolism during the 3-h oGTT, lipid profile, uric acid, thyroid hormones, and liver enzymes were assessed. From the analyzed components of MetS in adult women we proved the association of low birth weight (birth weight <25th percentile) with glucose processing, in particular among women with a history of GDM. Low birth weight GDM women revealed significantly higher postchallenge insulin secretion and lower peripheral insulin sensitivity. Re-examinations indicate this association persists long after delivery.</jats:p
Prediction of long-term prognosis of age-related macular degeneration treated by hemorheologic therapy using baseline laboratory indicators - Experimental-clinical model
BACKGROUND + OBJECTIVE: Age-related macular degeneration (AMD) is the most common cause of practical blindness in people over 60 years of age in industrialised countries. We formulated a hypothesis that a group of initial laboratory parameters would be suitable for prediction of prognosis of AMD, allowing for individual modifications in treatment intensity. PATIENTS AND METHODS: 66 patients with dry form of AMD were treated using rheohaemapheresis with an individual follow-up period of more than 5 years. The patients’ initial laboratory data was split in two subgroups based on treatment success and analysed using discriminant analysis (analysis of the linear and quadratic models using the automated and interactive step-wise approach) by means of the Systat 13 software. RESULTS: Prediction of prognosis based on the initial laboratory parameters was correct in 79% of unsuccessfully treated patients, allowing for early detection of high-risk patients. With the use of a quadratic model, the prediction was correct in 100% of unsuccessfully treated patients and in 75% of successfully treated patients. CONCLUSION: Implementation of discriminant analysis is a promising method for prediction of prognosis, especially when the patient is at risk of AMD progression, which allows for early and more intensive monitoring and treatment.</jats:p
