12 research outputs found

    Tetrahedral mesh improvement by shell transformation

    Get PDF
    Existing flips for tetrahedral meshes simply make a selection from a few possible configurations within a single shell (i.e., a polyhedron that can be filled up with a mesh composed of a set of elements that meet each other at one edge), and their effectiveness is usually confined. A new topological operation for tetrahedral meshes named shell transformation is proposed. Its recursive callings execute a sequence of shell transformations on neighboring shells, acting like composite edge removal transformations. Such topological transformations are able to perform on a much larger element set than that of a single flip, thereby leading the way towards a better local optimum solution. Hence, a new mesh improvement algorithm is developed by combining this recursive scheme with other schemes, including smoothing, point insertion and point suppression. Numerical experiments reveal that the proposed algorithm can well balance some stringent and yet sometimes even conflict requirements of mesh improvement, i.e., resulting in high-quality meshes and reducing computing time at the same time. Therefore, it can be used for mesh quality improvement tasks involving millions of elements, in which it is essential not only to generate high-quality meshes, but also to reduce total computational time for mesh improvement

    Characteristic parameter sets and limits of circulant Hermitian polygon transformations

    No full text
    AbstractPolygon transformations based on taking the apices of similar triangles constructed on the sides of an initial polygon are analyzed as well as the limit polygons obtained by iteratively applying such transformations. In contrast to other approaches, this is done with respect to two construction parameters representing a base angle and an apex perpendicular subdivision ratio. Furthermore, a combined transformation leading to circulant Hermitian matrices is proposed, which eliminates the rotational effect of the basic transformation. A finite set of characteristic parameter subdomains is derived for which the sequence converges to specific eigenpolygons. Otherwise, limit polygons turn out to be linear combinations of up to three eigenpolygons. This leads to a full classification of circulant Hermitian similar triangles based polygon transformations and their limit polygons. As a byproduct classical results as Napoleon’s theorem and the Petr–Douglas–Neumann theorem can be easily deduced

    How Bürgi computed the sines of all integer angles simultaneously in 1586

    No full text
    We present an algorithm discovered by Jost Bürgi around 1586, lost until 2013, and proven in 2015. Bürgi’s method needs only sums of integers and divisions by 2 to compute simultaneously and with any desired accuracy the sines of the nth parts of the right angle. We explain why it works with a new proof using polygons and discrete Fourier transforms
    corecore