29,609 research outputs found

    Prediction of payload vibration environments by mechanical admittance test techniques

    Get PDF
    A series of experiments was conducted with simple beam and mass launch vehicle and payload models in order to determine the validity of mechanical admittance/impedance techniques applied to development of improved payload vibration tests. Admittances and impedances were measured from tests of the individual components to form matrices which were combined analytically to allow prediction of responses for the complete system. Results were computed for a transmission matrix approach and an admittance matrix approach. Both a rigid body and a flexible payload model were considered. The results clearly demonstrate that the transmission matrix method is too sensitive to measurement error to be practical for this application, while the pure admittance matrix method produces quite satisfactory results. The effects of various errors on the final results are demonstrated

    A 300 GHz "Always-in-Focus" Focusing System for Target Detection

    Get PDF
    A focusing system for a 300 GHz radar with 5 m target distance and 10 mm diameter spot size resolution is proposed. The focusing system is based on a Gaussian telescope scheme and its main parameters have been de¬signed using Gaussian beam quasi-optical propagation theory with an in-house developed MATLAB® based analysis tool. Then, this approach has been applied to a real focusing system based on two elliptical mirrors in order to reduce the distortion and cross-polar level and a plane mirror to provide scanning capabilities. The over¬all system has been simulated with a full-wave electromag¬netic simulator and its behavior is presented. With this approach, the focusing system always works "in-focus" since the only mirror that is rotated when scanning is the output plane mirror, so the beam is almost not distorted. The design process, although based in the well-known Gaussian beam quasi-optical propagation theory, provides a fast and accurate method and minimizes the overall size of the mirrors. As a consequence, the size of the focusing system is also reduced

    The Distribution of Alpha Elements in Ultra-Faint Dwarf Galaxies

    Get PDF
    The Milky Way ultra-faint dwarf galaxies (UFDs) contain some of the oldest, most metal-poor stars in the Universe. We present [Mg/Fe], [Si/Fe], [Ca/Fe], [Ti/Fe], and mean [alpha/Fe], abundance ratios for 61 individual red giant branch stars across 8 UFDs. This is the largest sample of alpha abundances published to date in galaxies with absolute magnitudes M_V > -8, including the first measurements for Segue 1, Canes Venatici II, Ursa Major I, and Leo T. Abundances were determined via medium-resolution Keck/DEIMOS spectroscopy and spectral synthesis. The sample spans the metallicity range -3.4 < [Fe/H] < -1.1. With the possible exception of Segue 1 and Ursa Major II, the individual UFDs show on average lower [alpha/Fe] at higher metallicities, consistent with enrichment from Type Ia supernovae. Thus even the faintest galaxies have undergone at least a limited level of chemical self-enrichment. Together with recent photometric studies, this suggests that star formation in the UFDs was not a single burst, but instead lasted at least as much as the minimum time delay of the onset of Type Ia supernovae (~100 Myr) and less than ~2 Gyr. We further show that the combined population of UFDs has an [alpha/Fe] abundance pattern that is inconsistent with a flat, Galactic halo-like alpha abundance trend, and is also qualitatively different from that of the more luminous CVn I dSph, which does show a hint of a plateau at very low [Fe/H].Comment: 14 pages, 6 figures, re-submitted to ApJ with revisions based on referee repor
    corecore