
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

An Environment for Building Prolog Programs Based on
Knowledge about their Construction

Citation for published version:
Vargas-Vera, M & Robertson, D 1994, 'An Environment for Building Prolog Programs Based on Knowledge
about their Construction'. in Proceedings of the 10th Workshop on Logic Programming (WLP 94), Zurich.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Author final version (often known as postprint)

Published In:
Proceedings of the 10th Workshop on Logic Programming (WLP 94), Zurich

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Feb. 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28968024?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.research.ed.ac.uk/portal/en/publications/an-environment-for-building-prolog-programs-based-on-knowledge-about-their-construction(f8e47944-72e7-4f52-b69c-6ec7c405400f).html


An Environment for Building Prolog Programs

Based on Knowledge about their Construction

Mar��a Vargas�Vera and Dave Robertson
Department of Arti�cial Intelligence

University of Edinburgh�

�� South Bridge�

Edinburgh EH� �HN� U�K�

email� fmariav�drg	aisb�ed�ac�uk

Program combination can be used to promote the reuse of software by allowing complex
programs to be built by repeated combination of other programs�

Previous attempts at automatic systems which assist programmers in the task of com�
bining programs have generally required lots of interaction from a user� who also typically
needs a good understanding of the particular program transformation process being ap�
plied� A system for transforming programs expressed as recursion equations is given in
�BD���� but its use requires intervention of a human with a good understanding of pro�
gram transformation methods� In procedural languages� there are ways �HPR��� to merge
programs derived from an initial generic template� however� this approach is restricted to
a limited class of programs� In �TS�	� TS�
�� an unfold�fold based transformation sys�
tem was given� but requires user intervention and is restricted to programs with the same
�ow of control� In �LS��� SL��� methods were given for combining Prolog programs with
the same basic �ow of control meta�interpreters� but these also require user intervention�
The method of �FF��� employs basic schemata supplied by an expert� to combine list�
processing programs� The method is very e�cient� however it can present the user with a
di�cult choice between possible output schemata� The method in �PP��� combines logic
programs with the same �ow of control using basic fold�unfold transformations� but relies
on user�guidance and its e�ciency depends on the decisions made by the user�

Given these problems of over�reliance on the user� and lack of �exibility� we started out
with three basic ideas as to how the situation could be improved�

� Possibly� having a high level description of the workings of the programs would be
useful�

� Such a high�level description was potentially available from Prolog techniques editors�
by modifying them so as to record the history of the program development which we
call the program history�� The advantage of using the program history is that it would
give information about the program that would otherwise be di�cult to re�extract
from the �nished program�

� We should develop many special purpose combination methods rather than attempt
to �nd a small number of general purpose methods� This was motivated by initial
experiments in combining various standard programs with the known methods�

�



To investigate these ideas we took Sterling�s notion of initial control �ows�� extended
it with additional �mutations�� and developed it into a program classi�cation scheme�

We then designed combination methods that were typically only to be used for partic�
ular classes� We found that this had the advantage that the method could then make most
of the choices necessary in the combination process choices that the user would otherwise
have to make�� and also work e�ciently for its intended class of programs� The methods
were able to do this using the knowledge contained in the program history� Furthermore�
the program history itself could be used to classify the program and so select the correct
method�

The initial system was then further improved by re�nements to the classi�cation system
and the development of new methods that were tailored to make an e�ective use of the
program history� whilst also ensuring that we could still use the program history to select
the correct method��

In some cases� when the user had underspeci�ed the requirements of the combined
program� the classi�cation of programs using the high�level description in the program
history� implicitly allowed the method to make an informed estimate of what were the
users likely intentions� see the example presented later� The methods were also able to
combine programs with di�erent �ows of control� and for a common class of programs with
arithmetic operations the system can deduce which arithmetic laws can be applied in order
to get a more optimal combined program� More detailed description of these methods can
be found in �VV�
��

Thus� our ideal program construction system consists of a Prolog techniques editor and
a composition system� We have not built a techniques editor because such systems already
exist �Rob��� Bow�	�� and could easily be modi�ed to record the choices that the user
makes when building a program� In these editors� such choices include selecting the initial
control �ow skeleton� and the techniques standard Prolog practices�� These choices are
stored in the program history� which therefore contains a high�level description of the
program that is close to the way that an expert might think about the program simply
because the editors are designed to use methods that experts might use themselves� but
allow novices to use them easily��

The composition system allows users to construct more complex programs by combining
simpler programs which have been built by means of a techniques editor as described
above� A component of this system is the selection procedure which automatically selects
a combination method according to the program histories of the simpler programs� The
selectedmethod then controls the application of transformation rules taken from a library��
making its decisions according to the information it �nds in the program history� We have
designed the methods so that when they meet an underspeci�ed combination� then they
will tend to do transformations that preserve the spirit of the program histories and hence
their functionalities� rather than the simplest logical alternative� again we refer the reader
to the example later� We believe this is more likely to match user intentions in the future

�This basis for the classi�cation scheme was not chosen randomly� but was based on our studies in

which we found that knowledge of the 
ow of control was important in guiding the combination process�

�



we would also allow user con�rmation at this stage��
In this way the composition system produces as output the combined program and a

new history for the combined program� These can be stored and used as input for further
combinations� The main characteristics of our composition system are�

� The system decides the combining method by analysing the pair of programs to be
combined using the program history��

� The user does not need to take major decisions in the composition system such as
which clauses need to be unfolded or folded i�e� the user does not need to know
about program transformation��

Let us now proceed to the promised example� Suppose we have two predicates�

pos�List�Element�Pos��
�nds Element in the List with position Pos

counting from the head of the list��

path�List�Element�Path��
�nds Element in the List with path Path

meaning sequence of elements up to and
including the Element��

pos��X� ��X���	 path��X� ��X��X��	

pos�� �T��X�N� 
� path��H�T��X��H�R�� 
�

pos�T�X�NP�� path�T�X�R�	

N is NP��	

Now suppose that the user requests that we combine these two programs� Most trans�
formation systems will take the join speci�cation to be the Prolog program

p path��L�X�P�LP� 
�

pos�L�X�P��

path�L�X�LP�	

and then convert this to the logically equivalent program

p path���X� ��X����X��	

p path���X�T��X����X�R��
�

path�T�X�R�	

p path���X�T��X�N��X�� 
�

pos�T�X�NP��

N is NP��	

p path���H�T��X�N��H�R�� 
�

p path��T�X�NP�R��

N is NP ��	

In this case� if we give the query p path��������������P�Path� then Prolog will give
four answers

P 	 �

Path 	 �����

P 	 


Path 	 ���������

P 	 �

Path 	 ���������

P 	 


Path 	 �����

In our opinion� this would usually not correspond to the users intentions� Instead� it
seems more likely that the user would want to combine the functionalities of the programs
to get

	



p path��List�Element�Pos�Path��
�nds Element in the List with position Pos� and path
Path�

in which case the last two solutions would be unwanted� because they correspond to �nding
di�erent copies of the same element in the list and returning the path for one but the
position for the other� Systems that rely only on the join speci�cation written in the
Prolog form have no way to know that the user wanted exactly the same Element� That
is� we want to synchronise the list search performed in pos�� and path��� There is no way
to express this requirement directly in Prolog using only the given predicates�

However� our system does not rely on the Prolog form of the join speci�cation� but
e�ectively has an extended join speci�cation which we can write as

p path�L�X�P�LP� �
pos�L�X�P� �

path�L�X�LP�	

where the underlined arguments provide �ows of control which we want to synchronise�
Since we assume knowledge of the history of development of the program we can check
which arguments were intended to provide the �ow of control and assess whether they will
be compatible in combination� In this case it will observe from the program history� that
both programs have the same �ow of control� called �search��� and only di�er in that one
has a count technique added� and the other an accumulator technique� We assume that
the user would also like the �ow of control of the output to be �search� and would simply
like to have both the count and search techniques added� This gives the output program

p path��X� ��X����X��	

p path��H�T��X�N��H�R�� 
�

p path�T�X�NP�R��

N is NP ��	

which will indeed only return the �rst two desired� solutions and not the last two undesired
solutions�

Let us look at this in a bit more detail� The search �ow of control is

search��H� ��H� 
� t��H�	

search��H�T��X�
�

t�H��search�T�X�	

where t��� and t��� are tests� The simpli�ed versions of the program histories for the
programs pos�� and path�� are

history�pos� �� search� �����true�true��no test�����search�T�X��pos�T�X�NP���no test���

count�

history�path� �� search� �����true�true��no test�����search�T�X��path�T�X�R���no test���

accumulator�

�So�named because it functions to search for a particular element






For each history� the �rst argument is the name of the program� the second is the arity�
the third is the name of the initial control �ow used in the construction of the program� the
fourth argument is a list recording� for each clause� how the subgoals in the initial control
�ow were transformed� and the �fth is the technique used�

The program histories thus say that both programs were built starting from �search��
that the test literals were trivially true� but that the techniques used were di�erent� In this
case� the composition system then selects the join���� method that makes the combination
by combining only corresponding clauses� rather than combining all pairs of clauses� thus
achieving the desired synchronisation in the unpacking of the lists�

The basic results of this investigation were�

�� The classi�cation in terms of control �ows and techniques was a useful classi�cation
in that it allowed us to develop methods for each class in turn that were far more
powerful� and required less user direction� that was possible for programs in general�
This is not so surprising� after all� such classi�cations arose out of experts trying to
reason about Prolog programs� and they would try to �nd useful reasoning methods�

�� Storing the program history is useful� It acts as a set of �high�level machine�readable
comments� to the code� In this case these comments contained the information
necessary to classify the program by the above classi�cation� and hence select the
correct combination method� These comments could also be used by the combination
methods to further reduce the need for user interaction� In particular� the comments
could be used to infer the users intentions in requesting the program combination�
and so deal with cases of underspeci�cation� So the use of the program history was
a powerful way to render program combination more e�ective�

In �VVVR�	� VVRI�	� we describe our resulting set of methods� the corresponding
program classi�cation system and how these elements can be combined into an almost fully
automatic program combination system� Of course� our set of methods is not complete
but it does cover a wide range of combinations� A possible extension of this work would
be to use these comments in the program history� in order to aid a high�level dialogue
with the user� The system could talk in the language of control �ows� and their associated
functionalities� instead of in terms of low�level guidance of the combination method�

We believe that many of these lessons should also apply to languages other than Prolog�

We would like to give acknowledgements to Andrew Parkes and Rolando Carrera for

their useful comments on this paper�

References

�BD��� Rod Burstall and John Darlington� A Transformation System for Developing
Recursive Programs� Journal ACM� �
���

���� �����

�Bow�	� Andy Bowles� A Techniques Editor for Prolog novices� Internal note submitted
for publication� DAI� ���	�

�



�FF��� Norbert E� Fuchs and Markus P� J� Fromherz� Schema�Based Transformations
of Logic Programs� In Logic Program Synthesis and Transformation� Workshops

in Computing� Springer Verlag� �����

�HPR��� Susan Horwitz� Jan Prins� and Thomas Reps� Integrating Non�Interfering Ver�
sions of Programs� In Proceedings of the Fifteenth Annual ACM Symposium on

Principles of Programming Languages� San Diego� California� January �����

�LS��� Arun Lakhotia and Leon Sterling� Composing Logic Programs with Clausal
Join� Tr ������ Computer Engineering and Science Department� Case Western
Reserve University� �����

�PP��� Maurizio Proietti and Alberto Pettorossi� Best��rst Strategies for Incremental
Transformations of Logic Programs� In Second International Workshop on

Logic Program Synthesis and Transformation� �����

�Rob��� Dave Robertson� A Simple Prolog Techniques Editor for Novice Users� In G� A�
Wiggins� C� Mellish� and T� Duncan� editors� �rd UK Annual Conference on

Logic Programming� pages �������� Springer Verlag� April �����

�SL��� Leon Sterling and Arun Lakhotia� Composing Prolog Meta�Interpreters� In
Kowalski and Bowen� editors� �th Symposium of Logic Programming� pages
	���
�	� �����

�TS�	� Hisao Tamaki and Taisuke Sato� A Transformation System for Logic Programs
which Preserves Equivalence� Tr �	���� ICOT Research Center� ���	�

�TS�
� Hisao Tamaki and Taisuke Sato� Unfold�Fold Transformation of Logic Pro�
grams� In Proceedings of the Second International Conference on Logic Pro�

gramming� pages �����	�� Sweden� ���
�

�VV�
� Maria Vargas�Vera� Guidance during Program Composition in a Prolog Tech�

niques Editor� PhD thesis� Department of Arti�cial Intelligence� Edinburgh
University� ���
� In preparation�

�VVRI�	� Maria Vargas�Vera� Dave Robertson� and Robert Inder� Combining Prolog
Programs in a Techniques Editing System� In Third International Workshop

on Logic Programming Synthesis and Transformation� Springer Verlag� July
���	� Also published as DAI� Research Paper �	��

�VVVR�	� Maria Vargas�Vera� Wamberto Vasconcelos� and Dave Robertson� Building
Large�Scale Prolog Programs Using a Techniques Editing System� In Inter�

national Logic Programming Symposium� The MIT Press� October ���	� Pre�
sented as a poster and also published as DAI� Research Paper �	��

�


