101 research outputs found

    Determinants and impact of multidrug antibiotic resistance in pathogens causing ventilator-associated-pneumonia

    Get PDF
    Introduction The idea that multidrug resistance (MDR) to antibiotics in pathogens causing ventilator-associated pneumonia (VAP) is an independent risk factor for adverse outcome is still debated. We aimed to identify the determinants of MDR versus non-MDR microbial aetiology in VAP and assessed whether MDR versus non-MDR VAP was independently associated with increased 30-day mortality. Methods We performed a retrospective analysis of a prospectively registered cohort of adult patients with microbiologically confirmed VAP, diagnosed at a university hospital intensive care unit during a three-year period. Determinants of MDR as compared with non-MDR microbial aetiology and impact of MDR versus non-MDR aetiology on mortality were investigated using multivariate logistic and competing risk regression analysis. Results MDR pathogens were involved in 52 of 192 episodes of VAP (27%): methicillin-resistant Staphylococcus aureus in 12 (6%), extended-spectrum beta-lactamase producing Enterobacteriaceae in 28 (15%), MDR Pseudomonas aeruginosa and other non-fermenting pathogens in 12 (6%). Multivariable logistic regression identified the Charlson index of comorbidity (odds ratio (OR) = 1.38, 95% confidence interval (CI) = 1.08 to 1.75, p = 0.01) and previous exposure to more than two different antibiotic classes (OR = 5.11, 95% CI = 1.38 to 18.89, p = 0.01) as predictors of MDR aetiology. Thirty-day mortality after VAP diagnosis caused by MDR versus non-MDR was 37% and 20% (p = 0.02), respectively. A multivariate competing risk regression analysis showed that renal replacement therapy before VAP (standardised hazard ratio (SHR) = 2.69, 95% CI = 1.47 to 4.94, p = 0.01), the Charlson index of comorbidity (SHR = 1.21, 95% CI = 1.03 to 1.41, p = 0.03) and septic shock on admission to the intensive care unit (SHR = 1.86, 95% CI = 1.03 to 3.35, p = 0.03), but not MDR aetiology of VAP, were independent predictors of mortality. Conclusions The risk of MDR pathogens causing VAP was mainly determined by comorbidity and prior exposure to more than two antibiotics. The increased mortality of VAP caused by MDR as compared with non-MDR pathogens was explained by more severe comorbidity and organ failure before VAP

    Validation of the LUMIPULSE automated immunoassay for the measurement of core AD biomarkers in cerebrospinal fluid

    Get PDF
    OBJECTIVES: The core cerebrospinal fluid (CSF) biomarkers; total tau (tTau), phospho-tau (pTau), amyloid β 1-42 (Aβ 1-42), and the Aβ 1-42/Aβ 1-40 ratio have transformed Alzheimer's disease (AD) research and are today increasingly used in clinical routine laboratories as diagnostic tools. Fully automated immunoassay instruments with ready-to-use assay kits and calibrators has simplified their analysis and improved reproducibility of measurements. We evaluated the analytical performance of the fully automated immunoassay instrument LUMIPULSE G (Fujirebio) for measurement of the four core AD CSF biomarkers and determined cutpoints for AD diagnosis. METHODS: Comparison of the LUMIPULSE G assays was performed with the established INNOTEST ELISAs (Fujirebio) for hTau Ag, pTau 181, β-amyloid 1-42, and with V-PLEX Plus Aβ Peptide Panel 1 (6E10) (Meso Scale Discovery) for Aβ 1-42/Aβ 1-40, as well as with a LC-MS reference method for Aβ 1-42. Intra- and inter-laboratory reproducibility was evaluated for all assays. Clinical cutpoints for Aβ 1-42, tTau, and pTau was determined by analysis of three cohorts of clinically diagnosed patients, comprising 651 CSF samples. For the Aβ 1-42/Aβ 1-40 ratio, the cutpoint was determined by mixture model analysis of 2,782 CSF samples. RESULTS: The LUMIPULSE G assays showed strong correlation to all other immunoassays (r>0.93 for all assays). The repeatability (intra-laboratory) CVs ranged between 2.0 and 5.6%, with the highest variation observed for β-amyloid 1-40. The reproducibility (inter-laboratory) CVs ranged between 2.1 and 6.5%, with the highest variation observed for β-amyloid 1-42. The clinical cutpoints for AD were determined to be 409 ng/L for total tau, 50.2 ng/L for pTau 181, 526 ng/L for β-amyloid 1-42, and 0.072 for the Aβ 1-42/Aβ 1-40 ratio. CONCLUSIONS: Our results suggest that the LUMIPULSE G assays for the CSF AD biomarkers are fit for purpose in clinical laboratory practice. Further, they corroborate earlier presented reference limits for the biomarkers

    Elevated CSF GAP-43 is Alzheimer's disease specific and associated with tau and amyloid pathology

    Get PDF
    Introduction: The level of the presynaptic protein growth-associated protein 43 (GAP-43) in cerebrospinal fluid (CSF) has previously been shown to be increased in Alzheimer's disease (AD) and thus may serve as an outcome measure in clinical trials and facilitate earlier disease detection. / Methods: We developed an enzyme-linked immunosorbent assay for CSF GAP-43 and measured healthy controls (n = 43), patients with AD (n = 275), or patients with other neurodegenerative diseases (n = 344). In a subpopulation (n = 93), CSF GAP-43 concentrations from neuropathologically confirmed cases were related to Aβ plaques, tau, α-synuclein, and TDP-43 pathologies. / Results: GAP-43 was significantly increased in AD compared to controls and most neurodegenerative diseases and correlated with the magnitude of neurofibrillary tangles and Aβ plaques in the hippocampus, amygdala, and cortex. GAP-43 was not associated to α-synuclein or TDP-43 pathology. / Discussion: The presynaptic marker GAP-43 is associated with both diagnosis and neuropathology of AD and thus may be useful as a sensitive and specific biomarker for clinical research

    The Surviving Sepsis Campaign: results of an international guideline-based performance improvement program targeting severe sepsis

    Get PDF
    Objective: The Surviving Sepsis Campaign (SSC or “the Campaign”) developed guidelines for management of severe sepsis and septic shock. A performance improvement initiative targeted changing clinical behavior (process improvement) via bundles based on key SSC guideline recommendations on process improvement and patient outcomes. Design and setting: A multifaceted intervention to facilitate compliance with selected guideline recommendations in the ICU, ED, and wards of individual hospitals and regional hospital networks was implemented voluntarily in the US, Europe, and South America. Elements of the guidelines were “bundled” into two sets of targets to be completed within 6 h and within 24 h. An analysis was conducted on data submitted from January 2005 through March 2008. Main results: Data from 15,022 subjects at 165 sites were analyzed to determine the compliance with bundle targets and association with hospital mortality. Compliance with the entire resuscitation bundle increased linearly from 10.9% in the first site quarter to 31.3% by the end of 2 years (P < 0.0001). Compliance with the entire management bundle started at 18.4% in the first quarter and increased to 36.1% by the end of 2 years (P = 0.008). Compliance with all bundle elements increased significantly, except for inspiratory plateau pressure, which was high at baseline. Unadjusted hospital mortality decreased from 37 to 30.8% over 2 years (P = 0.001). The adjusted odds ratio for mortality improved the longer a site was in the Campaign, resulting in an adjusted absolute drop of 0.8% per quarter and 5.4% over 2 years (95% CI, 2.5–8.4%). Conclusions: The Campaign was associated with sustained, continuous quality improvement in sepsis care. Although not necessarily cause and effect, a reduction in reported hospital mortality rates was associated with participation. The implications of this study may serve as an impetus for similar improvement efforts.Electronic supplementary material The online version of this article (doi:10.1007/s00134-009-1738-3) contains supplementary material, which is available to authorized users

    Intensive care of the cancer patient: recent achievements and remaining challenges

    Get PDF
    A few decades have passed since intensive care unit (ICU) beds have been available for critically ill patients with cancer. Although the initial reports showed dismal prognosis, recent data suggest that an increased number of patients with solid and hematological malignancies benefit from intensive care support, with dramatically decreased mortality rates. Advances in the management of the underlying malignancies and support of organ dysfunctions have led to survival gains in patients with life-threatening complications from the malignancy itself, as well as infectious and toxic adverse effects related to the oncological treatments. In this review, we will appraise the prognostic factors and discuss the overall perspective related to the management of critically ill patients with cancer. The prognostic significance of certain factors has changed over time. For example, neutropenia or autologous bone marrow transplantation (BMT) have less adverse prognostic implications than two decades ago. Similarly, because hematologists and oncologists select patients for ICU admission based on the characteristics of the malignancy, the underlying malignancy rarely influences short-term survival after ICU admission. Since the recent data do not clearly support the benefit of ICU support to unselected critically ill allogeneic BMT recipients, more outcome research is needed in this subgroup. Because of the overall increased survival that has been reported in critically ill patients with cancer, we outline an easy-to-use and evidence-based ICU admission triage criteria that may help avoid depriving life support to patients with cancer who can benefit. Lastly, we propose a research agenda to address unanswered questions

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac
    corecore