160 research outputs found

    Features of recording the time profile of single picosecond pulses in the real-time mode

    Get PDF
    A technique for measuring the time profile of a beam-current pulse of runaway electrons that are generated in atmospheric-pressure air is described. The analysis of changes in the pulse shape depending on the bandwidth of the registration path with a temporal resolution of up to 20 ps was performed. It was shown that the electron beam detected behind small-diameter diaphragms has a complicated structure, which depends on the parameters of the gas diode. The issues related to the interpretation of subnanosecond pulses that are picked off capacitive voltage sensors are discussed

    Kinematics of Tycho-2 Red Giant Clump Stars

    Full text link
    Based on the Ogorodnikov-Milne model, we analyze the proper motions of 95 633 red giant clump (RGC) stars from the Tycho-2 Catalogue. The following Oort constants have been found: A = 15.9+-0.2 km/s/kpc and B = -12.0+-0.2 km/s/kpc. Using 3632 RGC stars with known proper motions, radial velocities, and photometric distances, we show that, apart from the star centroid velocity components relative to the Sun, only the model parameters that describe the stellar motions in the XY plane differ significantly from zero. We have studied the contraction (a negative K-effect) of the system of RGC stars as a function of their heliocentric distance and elevation above the Galactic plane. For a sample of distant (500--1000 pc) RGC stars located near the Galactic plane (|Z|<200 pc) with an average distance of d=0.7 kpc, the contraction velocity is shown to be Kd= -3.5+-0.9 km/s; a noticeable vertex deviation, lxy = 9.1+-0.5 degrees, is also observed for them. For stars located well above the Galactic plane (|Z|>=200 pc), these effects are less pronounced, Kd = -1.7+-0.5 km/s and lxy = 4.9+-0.6 degrees. Using RGC stars, we have found a rotation around the Galactic X axis directed toward the Galactic center with an angular velocity of -2.5+-0.3 km/s/kpc, which we associate with the warp of the Galactic stellar-gaseous disk.Comment: 23 pages, 7 figures, 4 table

    Astrometric Control of the Inertiality of the Hipparcos Catalog

    Full text link
    Based on the most complete list of the results of an individual comparison of the proper motions for stars of various programs common to the Hipparcos catalog, each of which is an independent realization of the inertial reference frame with regard to stellar proper motions, we redetermined the vector ω\omega of residual rotation of the ICRS system relative to the extragalactic reference frame. The equatorial components of this vector were found to be the following: ωx=+0.04±0.15\omega_x = +0.04\pm 0.15 mas yr1^{-1}, ωy=+0.18±0.12\omega_y = +0.18\pm 0.12 mas yr1^{-1}, and ωz=0.35±0.09\omega_z = -0.35\pm 0.09 mas yr1^{-1}.Comment: 8 pages, 1 figur

    The OSACA Database and a Kinematic Analysis of Stars in the Solar Neighborhood

    Get PDF
    We transformed radial velocities compiled from more than 1400 published sources, including the Geneva--Copenhagen survey of the solar neighborhood (CORAVEL-CfA), into a uniform system based on the radial velocities of 854 standard stars in our list. This enabled us to calculate the average weighted radial velocities for more than 25~000 HIPPARCOS stars located in the local Galactic spiral arm (Orion arm) with a median error of +-1 km/s. We use these radial velocities together with the stars' coordinates, parallaxes, and proper motions to determine their Galactic coordinates and space velocities. These quantities, along with other parameters of the stars, are available from the continuously updated Orion Spiral Arm CAtalogue (OSACA) and the associated database. We perform a kinematic analysis of the stars by applying an Ogorodnikov-Milne model to the OSACA data. The kinematics of the nearest single and multiple main-sequence stars differ substantially. We used distant (r\approx 0.2 kpc) stars of mixed spectral composition to estimate the angular velocity of the Galactic rotation -25.7+-1.2 km/s/kpc, and the vertex deviation,l=13+-2 degrees, and detect a negative K effect. This negative K effect is most conspicuous in the motion of A0-A5 giants, and is equal to K=-13.1+-2.0 km/s/kpc.Comment: 16 pages, 8 figure

    Doce de umbu.

    Get PDF
    O umbu apresenta sabor, aroma e textura exóticos e se destaca entre as frutas nativas da Caatinga por sua maior representatividade quanto à produção extrativista com fins alimentícios. As atividades agroindustriais geradas na cadeia produtiva desse fruto movimentam número expressivo de empreendimentos familiares no Semiárido do Brasil. O doce de umbu é indicado pelos empreendedores como o produto mais popular. A facilidade na elaboração, na aquisição das matérias-primas e nos equipamentos utilizados provavelmente justifica essa posição.bitstream/item/222451/1/AG-FAMILIAR-Doce-de-umbu-ed-01-2021-publicacao-digital.pd

    Decaying Dark Matter can explain the electron/positron excesses

    Full text link
    PAMELA and ATIC recently reported excesses in e+ e- cosmic rays. Since the interpretation in terms of DM annihilations was found to be not easily compatible with constraints from photon observations, we consider the DM decay hypothesis and find that it can explain the e+ e- excesses compatibly with all constraints, and can be tested by dedicated HESS observations of the Galactic Ridge. ATIC data indicate a DM mass of about 2 TeV: this mass naturally implies the observed DM abundance relative to ordinary matter if DM is a quasi-stable composite particle with a baryon-like matter asymmetry. Technicolor naturally yields these type of candidates.Comment: 20 pages, 7 figure

    The Palomar Testbed Interferometer Calibrator Catalog

    Get PDF
    The Palomar Testbed Interferometer (PTI) archive of observations between 1998 and 2005 is examined for objects appropriate for calibration of optical long-baseline interferometer observations - stars that are predictably point-like and single. Approximately 1,400 nights of data on 1,800 objects were examined for this investigation. We compare those observations to an intensively studied object that is a suitable calibrator, HD217014, and statistically compare each candidate calibrator to that object by computing both a Mahalanobis distance and a Principal Component Analysis. Our hypothesis is that the frequency distribution of visibility data associated with calibrator stars differs from non-calibrator stars such as binary stars. Spectroscopic binaries resolved by PTI, objects known to be unsuitable for calibrator use, are similarly tested to establish detection limits of this approach. From this investigation, we find more than 350 observed stars suitable for use as calibrators (with an additional 140\approx 140 being rejected), corresponding to 95\gtrsim 95% sky coverage for PTI. This approach is noteworthy in that it rigorously establishes calibration sources through a traceable, empirical methodology, leveraging the predictions of spectral energy distribution modeling but also verifying it with the rich body of PTI's on-sky observations.Comment: 100 pages, 7 figures, 7 tables; to appear in the May 2008ApJS, v176n
    corecore