12,067 research outputs found

    On the Relationship between the Uniqueness of the Moonshine Module and Monstrous Moonshine

    Full text link
    We consider the relationship between the conjectured uniqueness of the Moonshine Module, V{\cal V}^\natural, and Monstrous Moonshine, the genus zero property of the modular invariance group for each Monster group Thompson series. We first discuss a family of possible ZnZ_n meromorphic orbifold constructions of V{\cal V}^\natural based on automorphisms of the Leech lattice compactified bosonic string. We reproduce the Thompson series for all 51 non-Fricke classes of the Monster group MM together with a new relationship between the centralisers of these classes and 51 corresponding Conway group centralisers (generalising a well-known relationship for 5 such classes). Assuming that V{\cal V}^\natural is unique, we then consider meromorphic orbifoldings of V{\cal V}^\natural and show that Monstrous Moonshine holds if and only if the only meromorphic orbifoldings of V{\cal V}^\natural give V{\cal V}^\natural itself or the Leech theory. This constraint on the meromorphic orbifoldings of V{\cal V}^\natural therefore relates Monstrous Moonshine to the uniqueness of V{\cal V}^\natural in a new way.Comment: 53 pages, PlainTex, DIAS-STP-93-0

    A Quantum Broadcasting Problem in Classical Low Power Signal Processing

    Full text link
    We pose a problem called ``broadcasting Holevo-information'': given an unknown state taken from an ensemble, the task is to generate a bipartite state transfering as much Holevo-information to each copy as possible. We argue that upper bounds on the average information over both copies imply lower bounds on the quantum capacity required to send the ensemble without information loss. This is because a channel with zero quantum capacity has a unitary extension transfering at least as much information to its environment as it transfers to the output. For an ensemble being the time orbit of a pure state under a Hamiltonian evolution, we derive such a bound on the required quantum capacity in terms of properties of the input and output energy distribution. Moreover, we discuss relations between the broadcasting problem and entropy power inequalities. The broadcasting problem arises when a signal should be transmitted by a time-invariant device such that the outgoing signal has the same timing information as the incoming signal had. Based on previous results we argue that this establishes a link between quantum information theory and the theory of low power computing because the loss of timing information implies loss of free energy.Comment: 28 pages, late

    Geometrical Ambiguity of Pair Statistics. I. Point Configurations

    Full text link
    Point configurations have been widely used as model systems in condensed matter physics, materials science and biology. Statistical descriptors such as the nn-body distribution function gng_n is usually employed to characterize the point configurations, among which the most extensively used is the pair distribution function g2g_2. An intriguing inverse problem of practical importance that has been receiving considerable attention is the degree to which a point configuration can be reconstructed from the pair distribution function of a target configuration. Although it is known that the pair-distance information contained in g2g_2 is in general insufficient to uniquely determine a point configuration, this concept does not seem to be widely appreciated and general claims of uniqueness of the reconstructions using pair information have been made based on numerical studies. In this paper, we introduce the idea of the distance space, called the D\mathbb{D} space. The pair distances of a specific point configuration are then represented by a single point in the D\mathbb{D} space. We derive the conditions on the pair distances that can be associated with a point configuration, which are equivalent to the realizability conditions of the pair distribution function g2g_2. Moreover, we derive the conditions on the pair distances that can be assembled into distinct configurations. These conditions define a bounded region in the D\mathbb{D} space. By explicitly constructing a variety of degenerate point configurations using the D\mathbb{D} space, we show that pair information is indeed insufficient to uniquely determine the configuration in general. We also discuss several important problems in statistical physics based on the D\mathbb{D} space.Comment: 28 pages, 8 figure

    Dense sphere packings from optimized correlation functions

    Full text link
    Elementary smooth functions (beyond contact) are employed to construct pair correlation functions that mimic jammed disordered sphere packings. Using the g2-invariant optimization method of Torquato and Stillinger [J. Phys. Chem. B 106, 8354, 2002], parameters in these functions are optimized under necessary realizability conditions to maximize the packing fraction phi and average number of contacts per sphere Z. A pair correlation function that incorporates the salient features of a disordered packing and that is smooth beyond contact is shown to permit a phi of 0.6850: this value represents a 45% reduction in the difference between the maximum for congruent hard spheres in three dimensions, pi/sqrt{18} ~ 0.7405, and 0.64, the approximate fraction associated with maximally random jammed (MRJ) packings in three dimensions. We show that, surprisingly, the continued addition of elementary functions consisting of smooth sinusoids decaying as r^{-4} permits packing fractions approaching pi/sqrt{18}. A translational order metric is used to discriminate between degrees of order in the packings presented. We find that to achieve higher packing fractions, the degree of order must increase, which is consistent with the results of a previous study [Torquato et al., Phys. Rev. Lett. 84, 2064, 2000].Comment: 26 pages, 9 figures, 1 table; added references, fixed typos, simplified argument and discussion in Section IV

    Interacting Preformed Cooper Pairs in Resonant Fermi Gases

    Get PDF
    We consider the normal phase of a strongly interacting Fermi gas, which can have either an equal or an unequal number of atoms in its two accessible spin states. Due to the unitarity-limited attractive interaction between particles with different spin, noncondensed Cooper pairs are formed. The starting point in treating preformed pairs is the Nozi\`{e}res-Schmitt-Rink (NSR) theory, which approximates the pairs as being noninteracting. Here, we consider the effects of the interactions between the Cooper pairs in a Wilsonian renormalization-group scheme. Starting from the exact bosonic action for the pairs, we calculate the Cooper-pair self-energy by combining the NSR formalism with the Wilsonian approach. We compare our findings with the recent experiments by Harikoshi {\it et al.} [Science {\bf 327}, 442 (2010)] and Nascimb\`{e}ne {\it et al.} [Nature {\bf 463}, 1057 (2010)], and find very good agreement. We also make predictions for the population-imbalanced case, that can be tested in experiments.Comment: 10 pages, 6 figures, accepted version for PRA, discussion of the imbalanced Fermi gas added, new figure and references adde

    Quaternionic potentials in non-relativistic quantum mechanics

    Full text link
    We discuss the Schrodinger equation in presence of quaternionic potentials. The study is performed analytically as long as it proves possible, when not, we resort to numerical calculations. The results obtained could be useful to investigate an underlying quaternionic quantum dynamics in particle physics. Experimental tests and proposals to observe quaternionic quantum effects by neutron interferometry are briefly reviewed.Comment: 21 pages, 16 figures (ps), AMS-Te

    Spectral extension of the quantum group cotangent bundle

    Full text link
    The structure of a cotangent bundle is investigated for quantum linear groups GLq(n) and SLq(n). Using a q-version of the Cayley-Hamilton theorem we construct an extension of the algebra of differential operators on SLq(n) (otherwise called the Heisenberg double) by spectral values of the matrix of right invariant vector fields. We consider two applications for the spectral extension. First, we describe the extended Heisenberg double in terms of a new set of generators -- the Weyl partners of the spectral variables. Calculating defining relations in terms of these generators allows us to derive SLq(n) type dynamical R-matrices in a surprisingly simple way. Second, we calculate an evolution operator for the model of q-deformed isotropic top introduced by A.Alekseev and L.Faddeev. The evolution operator is not uniquely defined and we present two possible expressions for it. The first one is a Riemann theta function in the spectral variables. The second one is an almost free motion evolution operator in terms of logarithms of the spectral variables. Relation between the two operators is given by a modular functional equation for Riemann theta function.Comment: 38 pages, no figure

    On directed interacting animals and directed percolation

    Full text link
    We study the phase diagram of fully directed lattice animals with nearest-neighbour interactions on the square lattice. This model comprises several interesting ensembles (directed site and bond trees, bond animals, strongly embeddable animals) as special cases and its collapse transition is equivalent to a directed bond percolation threshold. Precise estimates for the animal size exponents in the different phases and for the critical fugacities of these special ensembles are obtained from a phenomenological renormalization group analysis of the correlation lengths for strips of width up to n=17. The crossover region in the vicinity of the collapse transition is analyzed in detail and the crossover exponent ϕ\phi is determined directly from the singular part of the free energy. We show using scaling arguments and an exact relation due to Dhar that ϕ\phi is equal to the Fisher exponent σ\sigma governing the size distribution of large directed percolation clusters.Comment: 23 pages, 3 figures; J. Phys. A 35 (2002) 272

    Finite time and asymptotic behaviour of the maximal excursion of a random walk

    Full text link
    We evaluate the limit distribution of the maximal excursion of a random walk in any dimension for homogeneous environments and for self-similar supports under the assumption of spherical symmetry. This distribution is obtained in closed form and is an approximation of the exact distribution comparable to that obtained by real space renormalization methods. Then we focus on the early time behaviour of this quantity. The instantaneous diffusion exponent νn\nu_n exhibits a systematic overshooting of the long time exponent. Exact results are obtained in one dimension up to third order in n1/2n^{-1/2}. In two dimensions, on a regular lattice and on the Sierpi\'nski gasket we find numerically that the analytic scaling νnν+Anν\nu_n \simeq \nu+A n^{-\nu} holds.Comment: 9 pages, 4 figures, accepted J. Phys.
    corecore