1,124 research outputs found

    Variability of the structure of winter microbial communities in Chelyabinsk lakes

    Get PDF
    Microorganisms form complex and dynamic communities that play a key role in the biogeochemical cycles of lakes. A high level of urbanization is currently a serious threat to bacterial communities and the ecosystem of freshwater bodies. To assess the contribution of anthropogenic load to variations in the structure of winter microbial communities in lakes, microorganisms of four water bodies of Chelyabinsk region were studied for the first time. We used cultural, chromatography-mass spectrometric, and modern methods of statistical data processing (particularly, multivariate exploratory analysis and canonical analysis of correspondences). The research showed that the composition of winter microbial communities in lakes Chebarkul’, Smolino, Pervoye, and Shershenevskoye Reservoir did not differ significantly between the main phyla of microorganisms. The dominant microorganisms were found to be of the Firmicutes phylum and Actinobacteria phylum. The structure of bacterial communities had special features depending on the characteristics of the water body and the sampling depths. Thus, in the lakes Smolino, Pervoye, and Shershenevskoye Reservoir, an important role was played by associations between microorganisms – indicators of fecal contamination: coliform bacteria and Enterococcus. On the contrary, in Chebarkul’ Lake, members of the genus Bacillus, which are natural bioremediators, formed stable winter associations. However, the differences between water bodies and sampling depths reflected 28.1% and 9.8% of the variability of the winter microbial communities, respectively. The largest contribution (about 60%) to the variability of the structure was made by intra-water processes, which determined the high heterogeneity of samples from different water areas. We assume that an important role in this variability was played by the high anthropogenic impact in a large industrial metropolis. In our opinion, this line of research is very promising for addressing key environmental issues

    Double-spiral magnetic structure of the Fe/Cr multilayer revealed by nuclear resonance scattering

    Full text link
    We have studied the magnetization depth profiles in a [57Fe(dFe)/Cr(dCr)]x30 multilayer with ultrathin Fe layers and nominal thickness of the chromium spacers dCr 2.0 nm using nuclear resonance scattering of synchrotron radiation. The presence of a broad pure-magnetic half-order (1/2) Bragg reflection has been detected at zero external field. The joint fit of the reflectivity curves and Mossbauer spectra of reflectivity measured near the critical angle and at the "magnetic" peak reveals that the magnetic structure of the multilayer is formed by two spirals, one in the odd and another one in the even iron layers, with the opposite signs of rotation. The double-spiral structure starts from the surface with the almost antiferromagnetic alignment of the adjacent Fe layers. The rotation of the two spirals leads to nearly ferromagnetic alignment of the two magnetic subsystems at some depth, where the sudden turn of the magnetic vectors by ~180 deg (spin-flop) appears, and both spirals start to rotate in opposite directions. The observation of this unusual double-spiral magnetic structure suggests that the unique properties of giant magneto-resistance devices can be further tailored using ultrathin magnetic layers.Comment: 9 pages, 3 figure

    Nonlinear magneto-optical rotation of frequency-modulated light resonant with a low-J transition

    Full text link
    A low-light-power theory of nonlinear magneto-optical rotation of frequency-modulated light resonant with a J=1->J'=0 transition is presented. The theory is developed for a Doppler-free transition, and then modified to account for Doppler broadening and velocity mixing due to collisions. The results of the theory are shown to be in qualitative agreement with experimental data obtained for the rubidium D1 line.Comment: 11 pages, 5 figures, v.2 edited for clarit

    Structures and orientational transitions in thin films of tilted hexatic smectics

    Full text link
    We present detailed systematic studies of structural transformations in thin liquid crystal films with the smectic-C to hexatic phase transition. For the first time all possible structures reported in the literature are observed for one material (5 O.6) at the variation of temperature and thickness. In unusual modulated structures the equilibrium period of stripes is twice with respect to the domain size. We interpret these patterns in the frame work of phenomenological Landau type theory, as equilibrium phenomena produced by a natural geometric frustration in a system having spontaneous splay distortion.Comment: 7 pages, 6 figure

    Clustering in light nuclei in fragmentation above 1 A GeV

    Full text link
    The relativistic invariant approach is applied to analyzing the 3.3 A GeV 22^{22}Ne fragmentation in a nuclear track emulsion. New results on few-body dissociations have been obtained from the emulsion exposures to 2.1 A GeV 14^{14}N and 1.2 A GeV 9^{9}Be nuclei. It can be asserted that the use of the invariant approach is an effective means of obtaining conclusions about the behavior of systems involving a few He nuclei at a relative energy close to 1 MeV per nucleon. The first observations of fragmentation of 1.2 A GeV 8^{8}B and 9^{9}C nuclei in emulsion are described. The presented results allow one to justify the development of few-body aspects of nuclear astrophysics.Comment: 7 pages, 8 figures, 3 tables, Nuclear Physics in Astrophysics-2, 16-20 May, 2005 (ATOMKI), Debrecen, Hungar

    Comparison of the yeast Saccharomyces cerevisiae var. boulardii and top-fermenting brewing yeast strains during the fermentation of model nutrient media and beer wort

    Get PDF
    Received: June 27th, 2022 ; Accepted: September 18th, 2022 ; Published: October 17th, 2022 ; Correspondence: [email protected], the yeast Saccharomyces cerevisiae var. boulardii have attracted the attention of Food Science researchers due to their unique properties, the main among which are probiotics. Thus, research is conducted on the use of this yeast as a starter culture in the technology of yogurt, fermented vegetables, fruit, vegetable juices, as well as beer. This paper is aimed at studying Saccharomyces cerevisiae var. boulardii 's fermentation performance compared to top-fermenting brewing yeast strains during fermentation of model nutrient media and beer wort. Fermentation activity of the studied strains was assessed based on the character of fermentation curves, as well as the values of the maximum substrate assimilation rate and apparent degree of fermentation. Moreover, during the study, beer was produced using the yeast Saccharomyces cerevisiae var. boulardii as a starter culture. According to the obtained results, it can be concluded that Saccharomyces cerevisiae var. boulardii have less fermentation activity compared to brewing strains. In turn, beer produced with Saccharomyces cerevisiae var. boulardiisignificantly differed in physicochemical, microbiological, and organoleptic parameters from the control sample obtained using the 047A brewing strain. Thus, it contained less ethanol and secondary metabolites; however, the concentration of living cells was significantly higher, which indicates a relatively high viability of the yeast Saccharomyces cerevisiae var. boulardii. From an organoleptic point of view, final beer has a positive sensory profile. The aroma of the product had a complex character: it included caramel, spicy, fruity and phenolic notes, as well as smoked and wine elements; while honey was the dominant note of the taste

    Fragmentation of relativistic nuclei in peripheral interactions in nuclear track emulsion

    Full text link
    The technique of nuclear track emulsions is used to explore the fragmentation of light relativistic nuclei down to the most peripheral interactions - nuclear "white" stars. A complete pattern of therelativistic dissociation of a 8^8B nucleus with target fragment accompaniment is presented. Relativistic dissociation 9^{9}Be2α\to2\alpha is explored using significant statistics and a relative contribution of 8^{8}Be decays from 0+^+ and 2+^+ states is established. Target fragment accompaniments are shown for relativistic fragmentation 14^{14}N\to3He+H and 22^{22}Ne\to5He. The leading role of the electromagnetic dissociation on heavy nuclei with respect to break-ups on target protons is demonstrated in all these cases. It is possible to conclude that the peripheral dissociation of relativistic nuclei in nuclear track emulsion is a unique tool to study many-body systems composed of lightest nuclei and nucleons in the energy scale relevant for nuclear astrophysics.Comment: 15 pages, 4 figures, 4 tables, conference: Relativistic nuclear physics: from Nuclotron to LHC energies, Kiev, June 18-22, 200
    corecore