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Microorganisms form complex and dynamic communities that play a key role in the biogeochemical cycles of lakes. A high level of 
urbanization is currently a serious threat to bacterial communities and the ecosystem of freshwater bodies. To assess the contribution of 
anthropogenic load to variations in the structure of winter microbial communities in lakes, microorganisms of four water bodies of Chelya-
binsk region were studied for the first time. We used cultural, chromatography-mass spectrometric, and modern methods of statistical data 
processing (particularly, multivariate exploratory analysis and canonical analysis of correspondences). The research showed that the compo-
sition of winter microbial communities in lakes Chebarkul’, Smolino, Pervoye, and Shershenevskoye Reservoir did not differ significantly 
between the main phyla of microorganisms. The dominant microorganisms were found to be of the Firmicutes phylum and Actinobacteria  
phylum. The structure of bacterial communities had special features depending on the characteristics of the water body and the sampling 
depths. Thus, in the lakes Smolino, Pervoye, and Shershenevskoye Reservoir, an important role was played by associations between micro-
organisms – indicators of fecal contamination: coliform bacteria and Enterococcus. On the contrary, in Chebarkul’ Lake, members of the 
genus Bacillus, which are natural bioremediators, formed stable winter associations. However, the differences between water bodies and 
sampling depths reflected 28.1% and 9.8% of the variability of the winter microbial communities, respectively. The largest contribution 
(about 60%) to the variability of the structure was made by intra-water processes, which determined the high heterogeneity of samples from 
different water areas. We assume that an important role in this variability was played by the high anthropogenic impact in a large industrial 
metropolis. In our opinion, this line of research is very promising for addressing key environmental issues.  

Keywords: water of surface water bodies; microbial communities of water bodies; anthropogenic load; canonical correspondence anal-
ysis; industrial megalopolis lakes.  

Introduction  
 

Communities of microorganisms are fundamental components of the 
aquatic environment. They are extremely diverse and play a key role in 
managing global energy flows and biogeochemical cycles (Ren et al., 
2017; Qu et al., 2018; Yadav et al., 2018). In marine, lake, and river eco-
systems bacteria (1) actively influence the flow of carbon, nitrogen, phos-
phorus, sulfur, and organic compounds, (2) take part in biodegradation of 
pollutants (for example, polycyclic aromatic hydrocarbons, remineraliza-
tion, and circulation of inorganic compounds), and (3) are the main food 
source for other organisms (such as protozoa) (Zhang et al., 2019; Reid 
et al., 2020; Yue et al., 2020). Moreover, microorganisms have a high 
response rate to changes in environmental conditions, which gives them 
value as indicators of water quality and ecosystem condition (Ji et al., 
2019; Sagova-Mareckova et al., 2021). Therefore, taxonomic and functio-
nal changes in microbial communities in lake water can lead to distur-
bances in ecosystem processes (David et al., 2021; Xie et al., 2021).  

Today, vast and expanding urbanization is hazardous to the ecosys-
tem of water bodies (Liu et al., 2021). The rate at which urban areas 
around cities grow are exceeding the rate of population growth (Li et al., 
2021), which worsens the hygienic properties of fresh water and, conse-
quently, human health (Xie et al., 2021). Anthropogenic transformation of 
lakes leads to the introduction of non-typical bacteria (including fecal) into 
the water systems and can change the natural composition of the microbial 
community of freshwater (Numberger et al., 2019; Cao et al., 2020; Yang 
et al., 2020). Normally, communities of natural microorganisms are able 
to limit the growth of pathogens sporadically polluting water bodies. 
However, in lakes that are subjected to a strong anthropogenic load, new 
communities are appearing that are favourable for the survival and spread 
of pathogens (Falk et al., 2019; Mathai et al., 2019; Beattie et al., 2020).  

Alternatively, it is known that aquatic communities of microorga-
nisms are very dynamic and can undergo rapid changes in composition, 

even over several days. The abundance of microorganisms can be deter-
mined by natural environmental and climatic factors such as (1) tempera-
ture, (2) the degree of photosynthetically active radiation penetration, 
(3) water salinity, (4) the level of dissolved oxygen, (5) the amount of 
organic and nutrient substances, etc. (Butler et al., 2019; Yue et al., 2020; 
David et al., 2021). Therefore, the question of which human activities 
affect the overall structure and diversity of the microbial community in 
freshwater lakes remains mostly unknown (Cavaco et al., 2019; Nnadozie 
& Odume, 2019; Yang et al., 2020).  

To evaluate the complex impact of industrial (wastewater and aerial 
emissions from factories, and the wastes from highways) and municipal 
(wastewater treatment plants and storm sewers) anthropogenic impacts, 
we studied microbial communities of lakes in Chelyabinsk city. Chelya-
binsk is one of the industrial metropolises of Russia, with a population 
over a million and a developed energy sector. There are more than eight 
large enterprises of ferrous and non-ferrous metallurgy in the city and the 
largest machine-building plants for tractors, automatic machines and seve-
ral others. The city is an important transport hub, lying between the Asian 
and European parts of Russia.  

Lakes Smolino and Pervoye receive technical wastewater from in-
dustrial enterprises, storm sewers and have intensive flat runoff from the 
asphalted areas of the city. Both reservoirs have increased mineralization 
(TDS about 1,000 mg/L) and high proportions of Na+ and Cl– in their 
composition. In terms of self-purification capacity, Pervoye Lake is a β-
mesosaprobic water body (Serebrennikova, 2010), and Smolino Lake is 
an α-mesosaprobic water body with the transition to a polysaprobic one 
(Zakharov & Likhachev, 2008). Shershenevskoye Reservoir is a source of 
drinking water supply in Chelyabinsk (TDS = 303 mg/L). According to 
its hydrobiological and hydrochemical parameters, it is a β-mesosaprobic 
water body (Deryabina et al., 2008; Nokhrin et al., 2020). All water bodies 
of the Chelyabinsk group are subject to some degree of anthropogenic 
eutrophication (Zakharov, 2010). We used Chebarkul’ Lake for compari-

311 



 

Biosyst. Divers., 2021, 29(4)  

son. It is located in a recreational area – 95 km from Chelyabinsk (TDS 
about 450–480 mg/L) (Zakharov, 2014; Nokhrin et al., 2018). This reser-
voir is distinguished by its high self-purification capacity: due to the shape 
of the basin, which causes wind mixing to a depth of 8–9 m, and a long 
period of autumn homothermy, the bottom waters are well supplied with 
oxygen (Zakharov, 2014).  

The aim of the research is to characterize the variability of the winter 
microbial communities in water bodies of Chelyabinsk region with differ-
ent levels of anthropogenic load.  
 
Materials and methods  
 

Water sampling was carried out from January 28, 2021 to February 6, 
2021, at four water bodies in Chelyabinsk region (Fig. 1). Samples were 
taken from three levels (surface, middle, and bottom). The depth at the 
sampling points varied from 1.7 to 7.3 m (average is 3.7 m). The water 
temperature varied from 0.6 to 8.7 °С (average is 4.2 °С). Water was 
taken using a bathometer into sterile polypropylene bottles, following the 
asepsis requirements. The collected water samples were marked and deli-
vered to the laboratory in an ice box at a temperature of 4–10 °C within 2–
6 hours after collection.  

 
Fig. 1. Water sampling points in Chelyabinsk region water bodies  

in the winter of 2021  

The concentration of water samples was carried out by the method of 
membrane filters on a “PVF 43/3 NB” vacuum filtration device (Baro-
membrannaya technologia LLC, Russia, 2020) using cellulose mem-
branes with a disc diameter of 47 mm and a pore size of 0.22 μm (Milli-
pore, USA, 2020). After filtration, the membranes were placed on diffe-
rent selective nutrient media: Endo, bismuth-sulfite agar, salt egg yolk 
agar, uriSelect agar, thiosulfate-citrate-bromothymol sucrose agar, iron-
sulfite medium, Sabouraud agar, and others. Next we determined the 
taxonomic status of the microorganisms based on a set of biochemical 
traits using test systems manufactured by LaChema (Czech Republic, 
2020): NEFERMtest, ENTEROtest, STREPTOtest, and STAPHYtest 
according to the instructions.  

The method of gas chromatography-mass spectrometry of microbial 
markers (GC-MSMM) proposed by Osipov et al. (2009) was used to 
detect uncultivated, slowly growing, and difficult to cultivate microorga-
nisms. The membrane was obtained after the water samples were concen-
trated using the membrane filter method, then the membrane was dried in 
methanol, subjected to acid methanolysis, extracted using hexane, and 
treated with N,O-bis(trimethylsilyl)trifluoroacetamide. The resulting mix-
ture of ethers was analyzed using a Maestro gas chromatography-mass 
spectrometer (Interlab LLC, Russia) on an HP-5ms capillary column 
(Hewlett-Packard, USA). The following are the conditions for chromato-
graphic separation:  

– initial temperature – 130 °С;  
– exposure – 0.5 min;  
– heating – 70 °C/min to 320 °C; 
– exposure at the final temperature (6 min); 
– selective ion mode; 
– helium carrier gas, flow – 1.2 mL/min, without flow separation.  
We determined the presence of microorganism markers using a stan-

dard mass spectrometer database. We recalculated the areas of peaks of 
substances into the number of microorganisms using the program deve-
loped by Interlab LLC.  

During the statistical analysis of the obtained data, we used sample 
comparisons and multivariate EDA. To compare water bodies by the 
relative ratio of taxa, we combined the data on the number of species in a 
4×5 contingency table and analyzed it using the chi-square test. Р-value 
was calculated by the Monte Carlo permutation test (n = 9999). Analysis 
of the contribution of  individual cells of the table was performed using 
Freeman–Tukey deviations FTdev (Sokal & Rohlf, 1995).  

Dependence of the microbial community composition from the fol-
lowing factors “Reservoir,” “Depth” and “Reservoir + Depth” was ana-
lyzed using the Canonical Correspondence Analysis (CCA) ordination 
technique in “vegan” package (version 2.5-7) for the statistical software 
environment R (version 4.0.3) (R Core Team, 2016) and in “PAST” 
package (version 4.05) (Hammer et al., 2001). For this, columns of dum-
my variables (contrasts) were added to the matrix of species composition 
data, indicating the presence (1) or absence (0) of this nominal predictor. 
Graphic constructions were performed in the “PAST” and “TpX” pack-
ages (version 1.5) (CTAN, 2008). Statistically significant effects were 
considered at P < 0.05 in the randomized analysis of variance (permuta-
tion ANOVA) (n = 9999).  
 
Results  
 

Using a combination of the classical cultural method and the GC-
MSMM method, 42 operational taxonomic units (OTU) were identified 
in the winter communities of microorganisms in four lakes of Chelyabinsk 
region. They belonged to four bacterial phyla (Bacteroidetes, Firmicutes 
Actinobacteria, and Proteobacteria) and fungi kingdom (members of the 
genus Aspergillus and Candida). Among them, 21 OTU were identified 
as species and 21 as genus.  

Comparison of water bodies to their relative ratio of taxa in microbial 
communities showed no differences (χ2

(12) = 6.02; PMC = 0.926). Bacteria 
of the Firmicutes phylum were predominant in all lakes in winter. Ho-
wever, the composition of the microbial community of Chebarkul’ Lake 
(low anthropogenic load) differed from the composition of lakes with high 
anthropogenic load by a significantly low occurrence of bacteria of the 
Proteobacteria phylum: FTdev = –1.79; P = 0.021. Moreover, this reservoir 
was characterized by slightly greater proportions of species belonging to 
the Actinobacteria and Bacteroidetes phyla (Fig. 2).  

  
Fig. 2. Absolute (nsp.) and relative (%) abundance  
of microorganisms’ taxa in the studied water bodies  
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The properties of the detection methods did not allow us to determine 
the microorganisms of the Archaea and Cyanobacteria taxa commonly 
found in water. 

To study the differences in the microbial community’s structure in 
water bodies, we used the CCA method. This is the constrained multiva-
riate ordination technique that allows us to extract the specific components 
of variability (inertia) among all the variability, specified by a set of regres-
sors controlled by the researcher. In our case, such regressors were “Re-
servoirs” and “Depths”, which were analyzed separately. Analysis with 
the inclusion of 4 water bodies, 3 canonical axes were identified, explain-
ing 28.1% of the total inertia (Fig. 3, 4). This model was statistically signif-
icant (F(3/32) = 4.16; P < 0.001), which indicates the existence of nonran-
dom differences in the structure of microbial communities in water bodies.  

Axis 1 explained 61.1% of the total inertia and was statistically highly 
significant: F(1/32) = 7.64; P < 0.001. As seen from the biplot (Fig. 3), it 
showed differences between the structures of microorganisms communi-
ties in water bodies with a high anthropogenic load (Chelyabinsk lakes) on 
the one hand and Chebarkul’ Lake on the other. The main feature of water 
bodies located within the boundaries of the Chelyabinsk city was the 
presence of coliform bacteria (Escherichia coli, Enterobacter spp., Kleb-
siella pneumoniae, Citrobacter spp., Proteus spp.), Enterococcus 
(E. faecalis, E. faecium, Enterococcus spp.), as well as members of the 
genus Vibrio. The main feature of the Chebarkul’ Lake microorganisms 
was strong association of various members of the genus Bacillus and the 

species not found in any other water body: Yersinia enterocolitica, Eike-
nella corrodens and Chryseobacterium indologenes. Chebarkul’ Lake 
was characterized by the absence of coliform bacterias, enterococcus, and 
vibrios (Fig. 3).  

Axis 2 explained 24.4% of the total inertia and was also statistically 
highly significant: F(1/32) = 3.04; P < 0.001. On this axis, differences bet-
ween Smolino Lake on the one hand and Shershenevskoye Reservoir and 
Pervoye Lake on the other were discovered. The main feature of the Smo-
lino Lake community, were members common for saline waters – the 
association of vibrios (Vibrio non cholera and Vibrio parahaemolyticus) 
and Ochrobactrum anthropi. The main feature of Shershenevskoye Re-
servoir and Pervoye Lake were high concentration of Erysipelatoclostri-
dium ramosum, Plesiomonas shigelloides, and Pseudomonas putida 
(Fig. 3).  

Axis 3 (Fig. 4) explained the remaining 14.5% of the variability in the 
species composition of the microbiota and was statistically significant: 
F(1/32) = 1.82; P = 0.011. It determined the differences in the structure of 
the community of microorganisms between Pervoye Lake and Sher-
shenevskoye Reservoir. As shown from Figure 4, the differences be-
tween them were as follows. In Pervoye Lake P. putida was detected, 
while it was absent in other water bodies and there was a high frequency 
of Enterococcus spp. In Shershenevskoye Reservoir an association of 
the following species was found: P. shigelloides, Blautia coccoides, and 
E. ramosum.  

  
Fig. 3. Microorganisms in the space of 1 and 2 axes of the canonical analysis of correspondences with water bodies as regressors  

  
Fig. 4. Microorganisms in the space of 1 and 3 axes of the canonical analysis of correspondences with water bodies as regressors  
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According to the same scheme of analysis, CCA was used with three 
sampling depths as regressors. We found that the depths significantly 
affect the microbial composition of microbial communities (F(2/33) = 1.80; 
P = 0.007) and explain it by 9.8%. Axis 1 explained 76.7% of the inertia; it 
was statistically significant: F(1/33) = 2.76; P = 0.005. As seen from the 
biplot (Fig. 5), this axis characterized the differences between surface and 

bottom levels. The middle level occupied an intermediate position, slightly 
closer to the bottom. Surface water samples showed the presence of the 
following species microorganism associations: B. coccoides, E. faecalis, 
Y. enterocolitica, and fungi of the genus Candida spp. The main characte-
ristic of the bottom samples was the presence of Chryseobacterium indo-
logenes, E. corrodens, and Streptomyces spp.  

  
Fig. 5. Microorganisms in the space of 1 and 2 axes of the canonical correspondence analysis with depths as regressors  

The remaining 23.3% of inertia was on axis 2, which characterized 
the differences between the middle and bottom levels but was not statisti-
cally significant: F(1/33) = 0.84; P = 0.642. Therefore, using the two CCA, 
we found that the factors “Reservoir” and “Depth” determined 28.1% and 
9.8% of the variability of microbial communities, respectively. The corres-
pondences analysis and its canonical version, as the measure of distance 
used the chi-square statistics, which doesn’t have the property of additivi-
ty. That’s the reason another analysis was used to assess the cumulative 
effects of these factors, with the simultaneous appliance of all seven re-
gressors (4 water bodies + 3 depths). So, we found that water bodies and 
depths statistically significantly (F(5/30) = 3.64; Р < 0.001) determine the 
structure of bacterial communities by 37.8%. This is almost identical to 
the simple sum of the percentages (28.1 + 9.8 = 37.9). The closeness of 
these numbers indicates the absence of interaction between “Water bodi-
es” and “Depth”. Consequently, 62.2% (100 – 37.8 = 62.2) of the variabi-
lity of winter microbial communities was due to other reasons, and in our 
research design, it means only a single source of variation – the differences 
between sampling points within one water body.  
 
Discussion  
 

Analysis of the composition of microbial communities of industrial 
metropolis lakes. The present research shows that members of the phyla in 
the dominant winter microorganism communities in the industrial metro-
polis lakes were Firmicutes, Actinobacteria, and Proteobacteria. Similar 
results were obtained by other researchers (Iliev et al., 2017; Kiama et al., 
2021). However, it is interesting to note that in lakes within Chelyabinsk 
city, bacteria of the Proteobacteria phylum prevailed over microorganisms 
of the Actinobacteria phylum. Simultaneously, in Chebarkul’ Lake, lo-
cated in the recreational area, the members of the Proteobacteria phylum 
was the lowest (2 out of 15 species found in urban water bodies were 
identified).  

The predominance of Firmicutes and Actinobacteria in the structure 
of microorganism communities in all the lakes is natural since the taxa 
included in their composition ensure the decomposition of a wide range of 

organic and inorganic compounds. This allows the community to perform 
its functions in low temperatures and the presence of ice cover (Butler 
et al., 2019; Manikkam et al., 2020; Phulpoto et al., 2021).  

Thus, bacteria of the genus Bacillus are autochthonous spore-forming 
inhabitants of soil and freshwater bodies. They can exist in a wide variety 
of temperatures in psychrophilic and thermophilic forms and play the role 
of primary colonizers in aquatic communities (Wu et al., 2017; Huang 
et al., 2018; Kim et al., 2021). A characteristic feature of these microor-
ganisms is the ability to reduce nitrates in water (Rajakumar et al., 2008), 
use heavy metals to form spores, thereby reducing their concentration 
(Yin et al., 2018; Ramírez et al., 2019; Wang et al., 2020), and remove oil 
spills (Tanzadeh et al., 2020). Thus, many researchers suggest using Bacil-
lus spp. to effect bioremediation of various water bodies from organic 
pollutants and heavy metals (Kuebutornye et al., 2019; Hlordzi et al., 
2020; Sharma & Shukla, 2021).  

Bacteria of the genus Clostridium include psychrophilic, mesophilic, 
and thermophilic species which are involved in decomposing complex or-
ganic substrates into acids, alcohols, and carbon dioxide, hydrogen, and 
minerals. The ability to form spores resistant to extreme conditions makes 
them widespread in the environment (Vierheilig et al., 2013; Tadese et al., 
2020).  

Representative species of the genera Peptostreptococcus, Streptococ-
cus, and Ruminicoccus are part of the normal microbiota of many animals 
(McLoughlin et al., 2020), including aquatic organisms, they participate in 
the biological degradation cycles of cellulose, amylose, fats, and ferment 
amino acids (Chapagain et al., 2019). Due to their frequent occurrence in 
the intestinal microbiota, they are often found in wastewater (Cyprowski 
et al., 2018).  

Actinobacteria are often the dominant phylum in the surface layer of 
lakes, as they are relatively resistant to ultraviolet radiation. Actinobacteria 
are indigenous bacteria in freshwater habitats that can degrade complex 
organic polymers (such as lignin) or absorb amino acids by metabolizing 
N-containing aromatic polymers (such as chitin) (Aguilar et al., 2018; Liu 
et al., 2019; Manikkam et al., 2020). The differences we found in the 
relative occurrence frequency of proteobacteria may be associated with 
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the fact that the members of this phylum belong to a physiologically di-
verse group of microorganisms. Thus, alpha and beta proteobacteria are 
considered to be some of the most important aquatic microorganisms on 
our planet. They often dominate oligotrophic water bodies and can be 
competitive when nutrient availability is low (Phulpoto et al., 2021; Tian 
et al., 2021). On the other hand, gamma-proteobacteria (and many poten-
tially pathogenic microorganisms among them) usually require high con-
centrations of organic matter. Often, the content of gamma-proteobacteria 
in aquatic communities grows as the population of cyanobacteria increas-
es (Kiersztyn et al., 2019), which was not identified in the current research.  

In addition to the three dominant taxa, bacteria of the Bacteroidetes, 
and specimen of the fungi (genera Aspergillus and Candida) were present 
in winter communities in all lakes. Bacteroides-Prevotella group is consi-
dered to be an indicator of fecal water contamination. This group is used to 
monitor or determine the spatial and temporal distribution of fecal conta-
mination in the natural aquatic environment (Okabe et al., 2007; Vadde 
et al., 2019; Nevers et al., 2020).  

Members of the Fungi are the main decomposers of organic matter 
on Earth. They are natural saprophytes that can survive in amoebas and 
other aquatic organisms, be part of biofilms in water pipes, and cause in-
fections in immunocompromised individuals (Wahl et al., 2018; Hubert 
et al., 2021).  

Heterogeneity of microbial communities structure in water bodies 
depending on the level of anthropogenic load and the sampling depths. 
The research identified high variability in the structure of microbial com-
munities between lakes in an industrial metropolis. Each water body had 
its own characteristics of the bacterial structure.  

Chebarkul’ Lake, which we took as an arbitrary control water body, 
demonstrated a community of microorganisms with a high potential for 
self-cleaning since, it was based on associations of genus Bacillus micro-
organisms (Bacillus spp., B. cereus, B. megaterium), whose distinctive 
feature is resistance to extreme conditions (including the low temperatures 
and low oxygenation in winter). Besides, they are natural destructors of 
toxic compounds (Alamri, 2012; Müller et al., 2015; Kim et al., 2021). 
Because of the high bacillus representation in the water body, Chebarkul’ 
Lake had no indicators of fresh fecal contamination (coliform bacteria and 
enterococcus). However, now the natural rhythm of the lake is disturbed: 
(1) water is constantly taken from the lake for the household and drinking 
needs of Chebarkul’ city, (2) there is industrial fishing, and (3) health-re-
sorts (Zakharov, 2010). Therefore a stable association of C. indologenes 
with opportunistic microorganisms of the species Y. enterocolitica and 
E. corrodens in the community was detected. To date, it is known that 
C. indologenes is a natural inhabitant of soil and water, vegetates in the 
aquatic organisms (including protozoa), and is usually not found in the hu-
man microbiota. However, it can induce infections in immunocompro-
mised individuals (Alon et al., 2018; Lim et al., 2020). Y. enterocolitica are 
human pathobionts capable of causing enterocolitis with food or water 
infection (Fàbrega & Vila, 2012; Lucero-Estrada et al., 2020; Guillier 
et al., 2021). Various authors have described E. corrodens as a normal oral 
inhabitant (commensal subgingival bacteria) commonly found in plaque 
biofilm in healthy individuals (Penton et al., 2020; Rodríguez-Rojas et al., 
2020; Tanaka et al., 2020). It is known that E. corrodens can form bio-
films on the surface of polystyrene (Azakami et al., 2006), which may 
indicate its anthropogenic origin.  

Smolino Lake, Pervoye Lake, and Shershenevskoye Reservoir are 
located on the Miass River in Chelyabinsk. These water bodies are subject 
to serious anthropogenic impact. For a long period of time, wastewater 
from the city’s enterprises was discharged into Smolino and Pervoye 
lakes. Before they became part of the technological chain of wastewater 
disposal, they were small-sized, salty and subsaline water bodies. As a 
result of the industrial wastewater influx (the transformed waters of the 
Miass River), the water regime of the lakes has changed significantly, and 
water desalination has occurred: the level of Smolino Lake rose by 3 m, of 
Pervoye Lake – by 5 m; the area of these water bodies has increased at 
least two times (Zakharov & Likhachev, 2008). Shershnevskoe Reservoir 
is the only source of drinking water in Chelyabinsk. Today, water from 
lakes Smolino, Pervoye, and Sineglazovo is constantly discharged 
through spillways into the Miass River basin (Zakharov, 2010). The ab-
undance of coliform bacteria (E. coli, Enterobacter spp., K. pneumoniae, 

Citrobacter spp., Proteus spp.) and enterococcus was a characteristic fea-
ture of the microbial communities’ structure in water bodies within the 
boundaries of the industrial metropolis. They indicate fresh fecal contami-
nation. Besides, Clostridium perfringens, which was found in all studied 
water bodies, is a universal component of human and animal intestines, 
which do not reproduce in most aquatic environments, and serve as a par-
ticular indicator of long-standing fecal contamination (Mueller-Spitz et al., 
2010; Vierheilig et al., 2013; Сао et al., 2020). The main source of surface 
water pollution with fecal bacteria can be wastewater from treatment faci-
lities (Beattie et al., 2020; Xie et al., 2021).  

According to Zakharov (2010), heavy metal ions are one of the pol-
luting factors of water bodies in Chelyabinsk city. All studied lakes were 
characterized by the presence of the opportunistic bacterium Pseudomo-
nas aeruginosa, in the structure of the community. Its distinguishing fea-
ture is increased resistance to heavy metals (Kumari & Das, 2019; Izrael-
Živković et al., 2019; Ramos et al., 2020). P. aeruginosa is well known in 
medicine as an antibiotic-resistant causative agent of nosocomial infec-
tions, but water is a natural reservoir of this species. P. aeruginosa is found 
in biofilms in water pipes and, as a consequence of the current lifestyle, it 
reaches relatively high abundance in food and on many wet surfaces 
(Kang & Kirienko, 2018; Ramos et al., 2020). Despite its potential patho-
genicity, P. aeruginosa has a very wide spectrum of enzymatic activity 
(Huang et al., 2018) and plays an important ecological role in water bo-
dies: it reduces the number of nitrates in lake waters (Rajakumar et al., 
2008), demonstrates a high efficiency in removal of crude oil (Huang 
et al., 2017; Tanzadeh et al., 2020), oils, petroleum products (Varjani et al., 
2020; Phulpoto et al., 2021), and heavy metals (Kumari et al., 2019; 
Izrael-Živković et al., 2019). The presence of this bacterial phylum in wa-
ter can promote the self-recovering of the polluted industrial water bodies.  

Specific to the bacterial structure of Smolino Lake was the presence 
of Vibrio non cholera, V. parahaemolyticus, and O. anthropi. Vibrios are 
quite common in marine environments, estuary waters, and brackish wa-
ter bodies. They live freely on the water surface, in the intestinal contents 
of marine animals, or in biofilm on marine microplastics (Kirstein et al., 
2016). Smolino Lake previously had a high natural salinity (up to 15 g/L) 
and was even used for balneological purposes (Chernyaeva et al., 1977). 
Despite anthropogenic desalination, Smolino retains the hydrochemical 
class characteristic in natural conditions (Zakharov, 2010), which explains 
the detection of vibrios in it that prefer salty waters. Unlike Vibrio non 
cholera, V. parahaemolyticus can produce a thermostable exotoxin and is 
a proven causative agent of acute foodborne gastroenteritis, wound infec-
tions (associated with recreational bathing), and sepsis (Matsuda et al., 
2020). Found only in Smolino Lake, O. anthropi is a versatile bacterial 
species capable of colonizing an exceptionally wide range of habitats (Ba-
bic et al., 2000; Zurek et al., 2000; Chang et al., 2007), occurs in soil and 
water, is resistant to heavy metals and petroleum-hydrocarbons (Abou-
Shanab et al., 2007; Phulpoto et al., 2021), has low virulence, and rarely 
causes human infection (Vila et al., 2016; Aguilera-Arreola et al., 2018).  

The presence of the bacterium P. putidа is a feature of the microbial 
communities’ structure in Pervoye Lake. Along with P. aeruginosa, it has 
an extremely diverse metabolism, can convert styrene, expanded polysty-
rene, and oil refined products into biodegradable organic compounds (Go-
mes et al., 2005; Ward et al., 2006). This is crucial for Pervoye Lake, 
which is highly polluted by industrial wastewater and is the most polluted 
lake among all water bodies of Chelyabinsk city (Serebrennikova, 2010; 
Zakharov, 2010).  

The bacterium P. shigelloides, was identified in the structure of the 
winter microorganism community only in the Shershenevskoye Reservo-
ir. It lives in freshwater ecosystems, estuaries and in the microbiota of the 
inhabitants of these aquatic environments (Janda et al., 2016; Pennycook 
et al., 2020).  

According to the depth of the sampling, the amount of oxygen, illu-
mination, and temperature variety, we observed pronounced differences in 
the structure of communities between the upper and bottom levels. Most 
interesting and unexpected is the contribution of various factors to the va-
riability of the structure of winter microbial communities in the water 
bodies of Chelyabinsk city. Specific differences in bacterial communities 
between the studied water bodies reflect only 30% of the structure varia-
bility. Another 10% of the variability is accounted for by the differences 
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between the communities of surface and bottom level microorganisms. 
However, the greatest contribution (about 60%) to the variability of the 
microbial community structure of lakes is made by intra-water processes, 
which determine the high heterogeneity of samples from different parts of 
the water area. We suggest that an important role in this variability belongs 
to the high anthropogenic load to which the water bodies of a large indus-
trial metropolis are exposed.  
 
Conclusion  
 

Understanding the ecological consequences of urbanization and the 
role of different groups of bacteria in aquatic habitats is necessary to re-
duce the potential anthropogenic impact on the condition and species 
composition of urban bacterial communities. We assessed the compositi-
on of microbial communities in water bodies with different levels of anth-
ropogenic load. In all studied water bodies, we identified not only the 
communities of bacteria that are specific to the environment but also spe-
cific taxa of anthropogenic origin. The results demonstrated that the condi-
tions of specific water bodies and the presence of certain subpopulations 
of bacteria are risk factors for the emergence and spread of potentially 
dangerous taxa of bacteria. For example, a pathogenic species of Vibrio 
(V. parahaemolyticus) was found in Smolino Lake.  

The research demonstrates that urbanization can alter the natural mic-
robial communities of water bodies and promote the development of 
certain genera of bacteria that include potential pathogens. The increased 
anthropogenic load leads to a change in the proportions of the ecosystem, 
the humanization of aquatic bacterial communities, affects the functioning 
of the microbial loop, and, accordingly, the biogeochemical cycle and 
aquatic biodiversity. It needs further research to understand the impact of 
urbanization fully. It is necessary to take measures to reduce the anthropo-
genic impact on aquatic ecosystems and compensate for the harmful ef-
fects both on humans and the environment.  
 

The research was funded by the Russian Foundation for Basic Research (RFBR) and 
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