23 research outputs found

    Diseño y evaluación de un programa para la mejora de la condición física en Educación Primaria: efecto sobre la autoestima y la intención de ser activo

    Get PDF
    The objective was to design a program to improve physical fitness and evaluate its effect on the intent to remain active and general self-esteem. An 8-week program of activities was designed to improve physical fitness in Physical Education, in addition to sports physical activity at recess. The quasi-experimental design included 70 schoolchildren (39 experimental group; 31 control group) from 6th grade of Primary Education. The high priority ALPHA-Fitness battery, the intentionality scale of being physically active in Primary Education, and the Multimedia and Multilingual Self-esteem Evaluation Questionnaire were used as measuring instruments. The effectiveness of the program was found in all the variables studied, especially in the improvement of cardiorespiratory capacity, jumping capacity and the socio-affective dimension of self-esteem. The importance of these programs in the improvement of the physical, psychological and social health of the students is highlighted.El objetivo fue diseñar un programa para mejorar la condición física y evaluar su efecto sobre la intencionalidad de seguir siendo activo y autoestima general. Se diseñó un programa de 8 semanas de actividades para mejorar la condición física en Educación Física, además de actividad física deportiva en los recreos. El diseño cuasiexperimental incluyó 70 escolares (39 grupo experimental; 31 grupo control) de 6º de Educación Primaria. Como instrumentos de medida se utilizaron la batería ALPHA-Fitness de alta prioridad, la Escala de intencionalidad de ser físicamente activo en Educación Primaria, y el Cuestionario Multimedia y Multilingüe de Evaluación de la Autoestima. Se encontró efectividad del programa en todas las variables estudiadas, en especial en la mejora de la capacidad cardiorrespiratoria, la capacidad de salto y la dimensión socioafectiva de la autoestima. Se destaca la importancia de estos programas en la mejora de la salud física, psicológica y social del alumnado

    Head-to-head comparison of (R)-[11C]verapamil and [18F]MC225 in non-human primates, tracers for measuring P-glycoprotein function

    Get PDF
    Purpose P-glycoprotein (P-gp) function is altered in several brain disorders; thus, it is of interest to monitor the P-gp function in vivo using PET. (R)-[11C]verapamil is considered the gold standard tracer to measure the P-gp function; however, it presents some drawbacks that limit its use. New P-gp tracers have been developed with improved properties, such as [18F]MC225. This study compares the characteristics of (R)-[11C]verapamil and [18F]MC225 in the same subjects. Methods: Three non-human primates underwent 4 PET scans: 2 with (R)[11C]verapamil and 2 with [18F]MC225, at baseline and after P-gp inhibition. The 30-min PET data were analyzed using 1-Tissue Compartment Model (1-TCM) and metabolite corrected plasma as input function. Tracer kinetic parameters at baseline and after inhibition were compared. Regional differences and simplified methods to quantify the P-gp function were also assessed. Results At baseline, [18F]MC225 VT values were higher, and k2 values were lower than those of (R)-[11C]verapamil, whereas K1 values were not significantly different. After inhibition, VT values of the 2 tracers were similar; however, (R)-[11C]verapamil K1 and k2 values were higher than those of [18F]MC225. Significant regional differences between tracers were found at baseline, which disappeared after inhibition. The positive slope of the SUV-TAC was positively correlated to the K1 and VT of both tracers. Conclusion [18F]MC225 and (R)-[11C]verapamil show comparable sensitivity to measure the P-gp function in non-humanprimates. Moreover, this study highlights the 30-min VT as the best parameter to measure decreases in the P-gp function with both tracers. [18F]MC225 may become the first radiofluorinated tracer able to measure decreases and increases in the P-gp function due to its higher baseline VT

    Repeatability of [<sup>18</sup>F]FDG PET/CT total metabolic active tumour volume and total tumour burden in NSCLC patients

    Get PDF
    Background: Total metabolic active tumour volume (TMATV) and total tumour burden (TTB) are increasingly studied as prognostic and predictive factors in non-small cell lung cancer (NSCLC) patients. In this study, we investigated the repeatability of TMATV and TTB as function of uptake interval, positron emission tomography/computed tomography (PET/CT) image reconstruction settings, and lesion delineation method. We used six lesion delineation methods, four direct PET image-derived delineations and two based on a majority vote approach, i.e. intersection between two or more delineations (MV2) and between three or more delineations (MV3). To evaluate the accuracy of those methods, they were compared with a reference delineation obtained from the consensus of the segmentations performed by three experienced observers. Ten NSCLC patients underwent two baseline whole-body [ 18 F]2-Fluoro-2-deoxy-2-D-glucose ([ 18 F]FDG) PET/CT studies on separate days, within 3 days. Two scans were obtained on each day at 60 and 90 min post-injection to assess the influence of tracer uptake interval. PET/CT images were reconstructed following the European Association of Nuclear Medicine Research Ltd. (EARL) compliant settings and with point-spread-function (PSF) modelling. Repeatability between the measurements of each day was determined and the influence of uptake interval, reconstruction settings, and lesion delineation method was assessed using the generalized estimating equations model. Results: Based on the Jaccard index with the reference delineation, the MV2 lesion delineation method was the most successful method for automated lesion segmentation. The best overall repeatability (lowest repeatability coefficient, RC) was found for TTB from 90 min of tracer uptake scans reconstructed with EARL compliant settings and delineated with 41% of lesion’s maximum SUV method (RC = 11%). In most cases, TMATV and TTB repeatability were not significantly affected by changes in tracer uptake time or reconstruction settings. However, some lesion delineation methods had significantly different repeatability when applied to the same images. Conclusions: This study suggests that under some circumstances TMATV and TTB repeatability are significantly affected by the lesion delineation method used. Performing the delineation with a majority vote approach improves reliability and does not hamper repeatability, regardless of acquisition and reconstruction settings. It is therefore concluded that by using a majority vote based tumour segmentation approach, TMATV and TTB in NSCLC patients can be measured with high reliability and precision

    Recruitment of pre-dementia participants: main enrollment barriers in a longitudinal amyloid-PET study

    Get PDF
    Background: The mismatch between the limited availability versus the high demand of participants who are in the pre-dementia phase of Alzheimer’s disease (AD) is a bottleneck for clinical studies in AD. Nevertheless, potential enrollment barriers in the pre-dementia population are relatively under-reported. In a large European longitudinal biomarker study (the AMYPAD-PNHS), we investigated main enrollment barriers in individuals with no or mild symptoms recruited from research and clinical parent cohorts (PCs) of ongoing observational studies. Methods: Logistic regression was used to predict study refusal based on sex, age, education, global cognition (MMSE), family history of dementia, and number of prior study visits. Study refusal rates and categorized enrollment barriers were compared between PCs using chi-squared tests. Results: 535/1856 (28.8%) of the participants recruited from ongoing studies declined participation in the AMYPAD-PNHS. Only for participants recruited from clinical PCs (n = 243), a higher MMSE-score (β = − 0.22, OR = 0.80, p <.05), more prior study visits (β = − 0.93, OR = 0.40, p <.001), and positive family history of dementia (β = 2.08, OR = 8.02, p <.01) resulted in lower odds on study refusal. General study burden was the main enrollment barrier (36.1%), followed by amyloid-PET related burden (PCresearch = 27.4%, PCclinical = 9.0%, X 2 = 10.56, p =.001), and loss of research interest (PCclinical = 46.3%, PCresearch = 16.5%, X 2 = 32.34, p <.001). Conclusions: The enrollment rate for the AMYPAD-PNHS was relatively high, suggesting an advantage of recruitment via ongoing studies. In this observational cohort, study burden reduction and tailored strategies may potentially improve participant enrollment into trial readiness cohorts such as for phase-3 early anti-amyloid intervention trials. The AMYPAD-PNHS (EudraCT: 2018–002277-22) was approved by the ethical review board of the VU Medical Center (VUmc) as the Sponsor site and in every affiliated site

    Validation and test-retest repeatability performance of parametric methods for [11C]UCB-J PET

    Get PDF
    [(11)C]UCB-J is a PET radioligand that binds to the presynaptic vesicle glycoprotein 2A. Therefore, [(11)C]UCB-J PET may serve as an in vivo marker of synaptic integrity. The main objective of this study was to evaluate the quantitative accuracy and the 28-day test–retest repeatability (TRT) of various parametric quantitative methods for dynamic [(11)C]UCB-J studies in Alzheimer’s disease (AD) patients and healthy controls (HC). Eight HCs and seven AD patients underwent two 60-min dynamic [(11)C]UCB-J PET scans with arterial sampling over a 28-day interval. Several plasma-input based and reference-region based parametric methods were used to generate parametric images using metabolite corrected plasma activity as input function or white matter semi-ovale as reference region. Different parametric outcomes were compared regionally with corresponding non-linear regression (NLR) estimates. Furthermore, the 28-day TRT was assessed for all parametric methods. Spectral analysis (SA) and Logan graphical analysis showed high correlations with NLR estimates. Receptor parametric mapping (RPM) and simplified reference tissue model 2 (SRTM2) BP(ND), and reference Logan (RLogan) distribution volume ratio (DVR) regional estimates correlated well with plasma-input derived DVR and SRTM BP(ND). Among the multilinear reference tissue model (MRTM) methods, MRTM1 had the best correspondence with DVR and SRTM BP(ND). Among the parametric methods evaluated, spectral analysis (SA) and SRTM2 were the best plasma-input and reference tissue methods, respectively, to obtain quantitatively accurate and repeatable parametric images for dynamic [(11)C]UCB-J PET. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13550-021-00874-8

    Effects of Tracer Uptake Time in Non-Small Cell Lung Cancer 18F-FDG PET Radiomics

    Get PDF
    Positron emission tomography (PET) radiomics applied to oncology allows the measurement of intra-tumoral heterogeneity. This quantification can be affected by image protocols hence there is an increased interest in understanding how radiomic expression on PET images is affected by different imaging conditions. To address that, this study explores how radiomic features are affected by changes in 18F-FDG uptake time, image reconstruction, lesion delineation, and radiomics binning settings. Methods: Ten non-small cell lung cancer (NSCLC) patients underwent 18F-FDG PET scans on two consecutive days. On each day, scans were obtained at 60min and 90min post-injection and reconstructed following EARL version 1 (EARL1) and with point-spread-function resolution modelling (PSF-EARL2). Lesions were delineated using thresholds at SUV=4.0, 40% of SUVmax, and with a contrast-based isocontour. PET image intensity was discretized with both fixed bin width (FBW) and fixed bin number (FBN) before the calculation of the radiomic features. Repeatability of features was measured with intraclass correlation (ICC), and the change in feature value over time was calculated as a function of its repeatability. Features were then classified on use-case scenarios based on their repeatability and susceptibility to tracer uptake time. Results: With PSFEARL2 reconstruction, 40% of SUVmax lesion delineation, and FBW intensity discretization, most features (94%) were repeatable at both uptake times (ICC>0.9), 39% being classified for dual-time-point use-case for being sensitive to changes in uptake time, 39% were classified for cross-sectional studies with unclear dependency on time, 20% classified for cross-sectional use while being robust to tracer uptake time changes, and 6% were discarded for poor repeatability. EARL1 images had one less repeatable feature than PSF-EARL2 (Neighborhood Gray-Level Different Matrix Coarseness), the contrast-based delineation had the poorest repeatability of the delineation methods with 45% features being discarded, and FBN resulted in lower repeatability than FBW (45% and 6% features were discarded, respectively). Conclusion: Repeatability was maximized with PSF-EARL2 reconstruction, lesion delineation at 40% of SUVmax, and FBW intensity discretization. Based on their susceptibility to tracer uptake time, radiomic features were classified into specific NSCLC PET radiomics use-cases

    Alzheimer’s disease pattern derived from relative cerebral flow as an alternative for the metabolic pattern using SSM/PCA

    Get PDF
    Background: 2-Deoxy-2-[18F]fluoroglucose (FDG) PET is an important tool for the identification of Alzheimer’s disease (AD) patients through the characteristic neurodegeneration pattern that these patients present. Regional cerebral blood flow (rCBF) images derived from dynamic 11C-labelled Pittsburgh Compound B (PIB) have been shown to present a similar pattern as FDG. Moreover, multivariate analysis techniques, such as scaled subprofile modelling using principal component analysis (SSM/PCA), can be used to generate disease-specific patterns (DP) that may aid in the classification of subjects. Therefore, the aim of this study was to compare rCBF AD-DPs with FDG AD-DP and their respective performances. Therefore, 52 subjects were included in this study. Fifteen AD and 16 healthy control subjects were used to generate four AD-DP: one based on relative cerebral trace blood (R1), two based on time-weighted average of initial frame intervals (ePIB), and one based on FDG images. Furthermore, 21 subjects diagnosed with mild cognitive impairment were tested against these AD-DPs. Results: In general, the rCBF and FDG AD-DPs were characterized by a reduction in cortical frontal, temporal, and parietal lobes. FDG and rCBF methods presented similar score distribution. Conclusion: rCBF images may provide an alternative for FDG PET scans for the identification of AD patients through SSM/PCA

    Optimization of parathyroid C-11-choline PET protocol for localization of parathyroid adenomas in patients with primary hyperparathyroidism

    Get PDF
    PURPOSE: To evaluate the optimal tracer uptake time, the minimal amount of radioactivity and the inter-observer agreement for 11C-choline positron emission tomography/computed tomography (PET/CT) in patients with primary hyperparathyroidism (pHPT). METHODS: Twenty-one patients with biochemically proven pHPT were retrospectively studied after injection of 6.3 ± 1.2 MBq/kg 11C-choline. PET data of the first nine patients, scanned for up to 60 min, were reconstructed in 10-min frames from 10- to 60-min postinjection (p.i.), mimicking varying 11C-choline uptake times. Parathyroid adenoma to background contrast ratios were calculated and compared, using standardized uptake values (SUVs). Data was reconstructed with varying scan durations (1, 2.5, 5, and 10 min) at 20-30-min p.i. (established optimal uptake time), mimicking less administered radioactivity. To establish the minimal required radioactivity, the SUVs in the shorter scan durations (1, 2.5, and 5 min) were compared to the 10-min scan duration to determine whether increased variability and/or statistical differences were observed. Four observers analyzed the 11C-choline PET/CT in four randomized rounds for all patients. RESULTS: SUVpeak of the adenoma decreased from 30 to 40 p.i. onwards. All adenoma/background contrast ratios did not differ from 20- to 30-min p.i. onwards. The SUVs of adenoma in the scan duration of 1, 2.5, and 5 min all differed significantly from the same SUV in the 10-min scan duration (all p = 0.012). However, the difference in absolute SUV adenoma values was well below 10% and therefore not considered clinically significant. The inter-observer analysis showed that the Fleiss' kappa of the 1-min scan were classified as "moderate," while these values were classified as "good" in the 2.5-, 5-, and 10-min scan duration. Observers scored lower certainty scores in the 1- and 2.5-min scans compared to the 5- and 10-min scan durations. CONCLUSION: The optimal time to start PET/CT scanning in patients with pHPT is 20 min after mean injection of 6.3 MBq/kg 11C-choline, with a recommended scan duration of at least 5 min. Alternatively, the radioactivity dose can be lowered by 50% while keeping a 10-min scan duration without losing the accuracy of 11C-choline PET/CT interpretation
    corecore