554 research outputs found

    Scaling of the risk landscape drives optimal life history strategies and the evolution of grazing

    Get PDF
    Consumers face numerous risks that can be minimized by incorporating different life-history strategies. How much and when a consumer adds to its energetic reserves or invests in reproduction are key behavioral and physiological adaptations that structure much of how organisms interact. Here we develop a theoretical framework that explicitly accounts for stochastic fluctuations of an individual consumer's energetic reserves while foraging and reproducing on a landscape with resources that range from uniformly distributed to highly clustered. First, we show that optimal life-history strategies vary in response to changes in the mean productivity of the resource landscape, where depleted environments promote reproduction at lower energetic states, greater investment in each reproduction event, and smaller litter sizes. We then show that if resource variance scales with body size due to landscape clustering, consumers that forage for clustered foods are susceptible to strong Allee effects, increasing extinction risk. Finally, we show that the proposed relationship between consumer body size, resource clustering, and Allee effect-induced population instability offers key ecological insights into the evolution of large-bodied grazing herbivores from small-bodied browsing ancestors.Comment: 9 pages, 5 figures, 3 Supplementary Appendices, 2 Supplementary Figure

    Correlated bosons in a one-dimensional optical lattice: Effects of the trapping potential and of quasiperiodic disorder

    Full text link
    We investigate the effect of the trapping potential on the quantum phases of strongly correlated ultracold bosons in one-dimensional periodic and quasiperiodic optical lattices. By means of a decoupling meanfield approach, we characterize the ground state of the system and its behavior under variation of the harmonic trapping, as a function of the total number of atoms. For a small atom number the system shows an incompressible Mott-insulating phase, as the size of the cloud remains unaffected when the trapping potential is varied. When the quasiperiodic potential is added the system develops a metastable-disordered phase which is neither compressible nor Mott insulating. This state is characteristic of quasidisorder in the presence of a strong trapping potential.Comment: Accepted for publication in PR

    Fragmentation, domain formation and atom number fluctuations of a two-species Bose-Einstein condensate in an optical lattice

    Full text link
    We theoretically study the loading of a two-species Bose-Einstein condensate to an optical lattice in a tightly-confined one-dimensional trap. Due to quantum fluctuations the relative inter and intra species phase coherence between the atoms and the on-site atom number fluctuations are reduced in the miscible regime. For the immiscible case the fluctuations are enhanced and the atoms form metastable interleaved spatially separated domains where the domain length and its fluctuations are affected by quantum fluctuations.Comment: 32 page

    Optimizing single-mode collection from pointlike sources of single photons with adaptive optics

    Get PDF
    Army Research Office MURI on Hybrid Quantum Interactions Program W911NF09104.The collection efficiency of light from a point-like emitter may be extremely poor due to aberrations induced by collection optics and the emission distribution of the source. Analyzing the aberrant wavefront (e.g., with a Shack-Hartmann sensor) and correcting accordingly can be infeasible on the single-photon level. We present a technique that uses a genetic algorithm to control a deformable mirror for correcting wavefront aberrations in single-photon signals from point emitters. We apply our technique to both a simulated point source and a real InAs quantum dot, achieving coupling increases of up to 50x00025; and automatic reduction of system drift.PostprintPeer reviewe

    A Comprehensive Evaluation of Nature Inspired Routing Algorithm for Mobile Ad Hoc Network : DEA and BCA

    Get PDF
    This paper discussed about the comprehensive evaluation of nature inspired routing algorithms such as Dolphin Echolocation Algorithm (DEA) and Bee colony Algorithm (BCA) use for distance optimization. The influence of DEA and BCA algorithms on Quality of Service (QoS) performance matrices for Mobile Ad hoc Network (MANET) is analyzed. Ultimately with the help of DEA it is possible to achieve optimized routing path between source and destination nodes. Further this paper have the analysis of various results which gives the comprehensive evaluation of DEA algorithm and it is suitable for MANET for achieving good Throughput, packet delivery ratio, delay and overhand

    Rangelands, conflicts, and society in the Upper Mustang Region, Nepal

    Full text link
    Rangelands are considered critical ecosystems in the Nepal Himalayas and provide multiple ecosystem services that support local livelihoods. However, these rangelands are under threat from various anthropogenic stresses. This study analyzes an example of conflict over the use of rangeland, involving two villages in the Mustang district of Nepal. This prolonged conflict over the use of rangeland rests on how use rights are defined by the parties, that is, whether they are based on traditional use or property ownership. Traditionally, such conflicts in remote areas were managed under the Mukhiya (village chief) system, but this became dysfunctional after the political change of 1990. The continuing conflict suggests that excessive demand for limited rangelands motivates local villagers to gain absolute control of the resources. In such contexts, external support should focus on enhancing the management and production of forage resources locally, which requires the establishment of local common property institutions to facilitate sustainable rangeland management.<br /
    corecore