2,930 research outputs found
The A-theoretic Farrell–Jones conjecture for virtually solvable groups
We prove the A -theoretic Farrell–Jones conjecture for virtually solvable groups. As a corollary, we obtain that the conjecture holds for S -arithmetic groups and lattices in almost connected Lie groups
Der Einfluss des ökologischen Landbaus auf das Raumnutzungsverhalten von Feldhasen (Lepus europaeus)
Agricultural intensification (AI) negatively affects biodiversity due to e.g. high-input farming. Organic farming can counteract this negative trend. Here, we studied
movement behavior of the European brown hare (Lepus europaeus), which frequently occurs in agricultural landscapes but also suffers from AI with declining population densities. We measured home range sizes in relation to local field management (organic vs. conventional farming) in Upper Bavarian, Germany. Results showed that
home ranges sizes decreased with increasing amount of organically managed area, while there was no relationship between conventional farmed area and hares’
movement behavior. Higher resource availability in organic fields decrease home range sizes and may therefore positively influences individual fitness and possibly
boosts hare densities
Pattern matching and pattern discovery algorithms for protein topologies
We describe algorithms for pattern matching and pattern
learning in TOPS diagrams (formal descriptions of protein topologies).
These problems can be reduced to checking for subgraph isomorphism
and finding maximal common subgraphs in a restricted class of ordered
graphs. We have developed a subgraph isomorphism algorithm for
ordered graphs, which performs well on the given set of data. The
maximal common subgraph problem then is solved by repeated
subgraph extension and checking for isomorphisms. Despite the
apparent inefficiency such approach gives an algorithm with time
complexity proportional to the number of graphs in the input set and is
still practical on the given set of data. As a result we obtain fast
methods which can be used for building a database of protein
topological motifs, and for the comparison of a given protein of known
secondary structure against a motif database
Non-Statistical Effects in Neutron Capture
There have been many reports of non-statistical effects in neutron-capture
measurements. However, reports of deviations of reduced-neutron-width
distributions from the expected Porter-Thomas (PT) shape largely have been
ignored. Most of these deviations have been reported for odd-A nuclides.
Because reliable spin (J) assignments have been absent for most resonances for
such nuclides, it is possible that reported deviations from PT might be due to
incorrect J assignments. We recently developed a new method for measuring spins
of neutron resonances by using the DANCE detector at LANSCE. Measurements made
with a 147Sm sample allowed us to determine spins of almost all known
resonances below 1 keV. Furthermore, analysis of these data revealed that the
reduced-neutron-width distribution was in good agreement with PT for resonances
below 350 eV, but in disagreement with PT for resonances between 350 and 700
eV. Our previous (n,alpha) measurements had revealed that the alpha strength
function also changes abruptly at this energy. There currently is no known
explanation for these two non-statistical effects. Recently, we have developed
another new method for determining the spins of neutron resonances. To
implement this technique required a small change (to record pulse-height
information for coincidence events) to a much simpler apparatus: A pair of C6D6
gamma-ray detectors which we have employed for many years to measure
neutron-capture cross sections at ORELA. Measurements with a 95Mo sample
revealed that not only does the method work very well for determining spins,
but it also makes possible parity assignments. Taken together, these new
techniques at LANSCE and ORELA could be very useful for further elucidation of
non-statistical effects.Comment: 8 pages, 3 figures, for proceedings of CGS1
Integration of airborne and ground observations of nitryl chloride in the Seoul metropolitan area and the implications on regional oxidation capacity during KORUS-AQ 2016
Nitryl chloride (ClNO2) is a radical reservoir species that releases chlorine radicals upon photolysis. An integrated analysis of the impact of ClNO2 on regional photochemistry in the Seoul metropolitan area (SMA) during the Korea-United States Air Quality Study (KORUS-AQ) 2016 field campaign is presented. Comprehensive multiplatform observations were conducted aboard the NASA DC-8 and at two ground sites (Olympic Park, OP; Taehwa Research Forest, TRF), representing an urbanized area and a forested suburban region, respectively. Positive correlations between daytime Cl2 and ClNO2 were observed at both sites, the slope of which was dependent on O3 levels. The possible mechanisms are explored through box model simulations constrained with observations. The overall diurnal variations in ClNO2 at both sites appeared similar but the nighttime variations were systematically different. For about half of the observation days at the OP site the level of ClNO2 increased at sunset but rapidly decreased at around midnight. On the other hand, high levels were observed throughout the night at the TRF site. Significant levels of ClNO2 were observed at both sites for 4-5 h after sunrise. Airborne observations, box model calculations, and back-trajectory analysis consistently show that these high levels of ClNO2 in the morning are likely from vertical or horizontal transport of air masses from the west. Box model results show that chlorine-radical-initiated chemistry can impact the regional photochemistry by elevating net chemical production rates of ozone by 25% in the morning
Enhanced characterization of the zebrafish brain as revealed by super-resolution track-density imaging
In this study, we explored the use of super-resolution track-density imaging (TDI) for neuroanatomical characterization of the adult zebrafish brain. We compared the quality of image contrast and resolution obtained with T-2* magnetic resonance imaging (MRI), diffusion tensor-based imaging (DTI), TDI, and histology. The anatomical structures visualized in 5 mu m TDI maps corresponded with histology. Moreover, the super-resolution property and the local-directional information provided by directionally encoded color TDI facilitated delineation of a larger number of brain regions, commissures and small white matter tracks when compared to conventional MRI and DTI. In total, we were able to visualize 17 structures that were previously unidentifiable using MR microimaging, such as the four layers of the optic tectum. This study demonstrates the use of TDI for characterization of the adult zebrafish brain as a pivotal tool for future phenotypic examination of transgenic models of neurological diseases
- …
