178 research outputs found

    Practical risk assessment of the relaxation of LOM protection settings in NIE networks' distribution system

    Get PDF
    This paper presents methodology, experience and practical outcomes of the risk assessment-based revision of Loss-OfMains (LOM) protection settings in NIE Networks’ distribution system. An investigative project has been undertaken by the authors to revise the current LOM practice as recommended by the G59/1/NI regulation, and to propose the settings which would meet the all-Ireland transmission system stability criteria. It is also important to ensure that any increased personal risk is realistically quantified and satisfies the Health and Safety requirements. Both aspects (i.e. LOM protection stability and sensitivity) are covered in the paper. The results and observations included in the paper aim to provide the means and supporting evidence for achieving best compromise in the revision of LOM protection settings

    A novel approach for protection of radial and meshed microgrids

    Get PDF
    During grid-connected operation mode of microgrids, since the main grid provides a large short-circuit current to the fault point, the protection can be performed by the conventional protective devices, but in islanded mode, fault currents are drastically lower than those of grid-connected mode. Hence, employment of traditional overcurrent-based protective devices in micro-grids is no longer valid and some alternative protection schemes should be developed. This paper presents a micro-grid protection scheme based on positive-sequence component using Phasor Measurement Units (PMUs) and a Central Protection Unit (CPU). The salient feature of the proposed scheme in comparison with the previous works is that it has the ability to protect both radial and meshed micro-grids against different types of faults. Furthermore, since the CPU is capable of updating its pickup values (upstream and downstream equivalent positive-sequence impedances of each line) after the first change in the micro-grid configuration (such as transferring from grid-connected to islanded mode and or disconnection of a line, bus, or DER either in grid-connected mode or in islanded mode), it can protect micro-grid against subsequent faults. In order to verify the effectiveness of the proposed scheme and the CPU, several simulations have been undertaken by using DIgSILENT PowerFactory and MATLAB software packages

    Multi-vector power island operation utilizing demand side response based on a cloud-based optimization strategy (CbOS)

    Get PDF
    Intentional islanding is one of the potential strategies to mitigate risks related to total blackouts by partitioning the network into multiple power islands. This paper focuses on developing a cloud-based strategy for managing the post-islanding power islands operation considering the coupling of the electrified heating vector. At the core, a novel multi-vector cloud-based optimization strategy (CbOS) is utilized to harness the hidden flexibility of heating, ventilation and air-conditioning (HVAC) systems, resulting in reduced load shedding required to balance the power island and decreased operational costs. To maintain the sustainability of the power island, CbOS is further integrated with an additional objective of optimizing a voltage stability index and costs. The architecture upon which CbOS is built, provides the means to deploy the required software tools and its operation is tested in a generalizable power island under representative cases studies with respect to the level of controllability that CbOS is expected to have among the fleet of energy assets. The results reveal that when all energy assets are operated under CbOS, a substantial cost reduction up to 55.6% can be achieved by utilizing the flexibility stemming from the HVAC systems. Concurrently, voltage stability profiles are improved for the lines under stress

    Steady-state performance of state-of-the-art modular multilevel and alternate arm converters with DC fault-blocking capability

    Get PDF
    This paper presents a comparison of the steady-state behaviour of four state-of-the-art HVDC converters with DC fault-blocking capability, based on the modular multilevel and alternate arm converter topologies. AC and DC power quality, and semiconductor losses are compared, whilst considering different operating conditions and design parameters, such as the number of cells and component sizing. Such comparative studies have been performed using high-fidelity converter models which include detailed representation of the control systems, and of the converter thermal circuit. The main findings of this comprehensive comparison reveal that, the mixed cell modular converter offers the best design trade-off in terms of power losses and quality, and control range. Moreover, it has been established that the modular converter with a reduced number of cells per arm and with each cell rated at high voltage (i.e. 10-20 kV), tends to exhibit higher switching losses and relatively poor power quality at the DC side

    meCLICK-Seq, a Substrate-Hijacking and RNA Degradation Strategy for the Study of RNA Methylation.

    Get PDF
    The fates of RNA species in a cell are controlled by ribonucleases, which degrade them by exploiting the universal structural 2'-OH group. This phenomenon plays a key role in numerous transformative technologies, for example, RNA interference and CRISPR/Cas13-based RNA editing systems. These approaches, however, are genetic or oligomer-based and so have inherent limitations. This has led to interest in the development of small molecules capable of degrading nucleic acids in a targeted manner. Here we describe click-degraders, small molecules that can be covalently attached to RNA species through click-chemistry and can degrade them, that are akin to ribonucleases. By using these molecules, we have developed the meCLICK-Seq (methylation CLICK-degradation Sequencing) a method to identify RNA modification substrates with high resolution at intronic and intergenic regions. The method hijacks RNA methyltransferase activity to introduce an alkyne, instead of a methyl, moiety on RNA. Subsequent copper(I)-catalyzed azide-alkyne cycloaddition reaction with the click-degrader leads to RNA cleavage and degradation exploiting a mechanism used by endogenous ribonucleases. Focusing on N6-methyladenosine (m6A), meCLICK-Seq identifies methylated transcripts, determines RNA methylase specificity, and reliably maps modification sites in intronic and intergenic regions. Importantly, we show that METTL16 deposits m6A to intronic polyadenylation (IPA) sites, which suggests a potential role for METTL16 in IPA and, in turn, splicing. Unlike other methods, the readout of meCLICK-Seq is depletion, not enrichment, of modified RNA species, which allows a comprehensive and dynamic study of RNA modifications throughout the transcriptome, including regions of low abundance. The click-degraders are highly modular and so may be exploited to study any RNA modification and design new technologies that rely on RNA degradation.UKRI (BBSRC DTP scholarships to S.M. and H.K.C) and the Jardine Foundation and Cambridge Trust (PhD scholarship to M.E.H.)

    A new fault-ride-through strategy for MTDC networks incorporating wind farms and modular multi-level converters

    Get PDF
    This paper presents a DC voltage control strategy for enhancing the fault-ride-through (FRT) capability of wind farms comprising of fully rated converter permanent magnet synchronous generators (FRC-PMSGs) connected to multi-terminal high voltage direct current (MT-HVDC) grids through modular multi-level converters (MMCs). The proposed FRT strategy is implemented on a master controller located in the offshore AC substation of each wind farm. The underlying issue addressed via the scheme relates to overvoltages in the HVDC links when the power transfer is disrupted due to faults occurring in the AC onshore grid. The corresponding Matlab/Simulinkr model has been validated using transient simulation, while the practical feasibility of the controller is demonstrated utilising Opal-RT© real-time hardware platform

    Design of a Hybrid AC/DC Microgrid Using HOMER Pro: Case Study on an Islanded Residential Application

    Get PDF
    This paper is concerned with the design of an autonomous hybrid alternating current/direct current (AC/DC) microgrid for a community system, located on an island without the possibility of grid connection. It is comprised of photovoltaic (PV) arrays and a diesel generator, AC loads, and battery energy storage devices for ensuring uninterruptible power supply during prolonged periods of low sunshine. A multi-objective, non-derivative optimisation is considered in this residential application; the primary objective is the system cost minimisation, while it is also required that no load shedding is allowed. Additionally, the CO2 emissions are calculated to demonstrate the environmental benefit the proposed system offers. The commercial software, HOMER Pro, is utilised to identify the least-cost design among hundreds of options and simultaneously satisfy the secondary objective. A sensitivity analysis is also performed to evaluate design robustness against the uncertainty pertaining to fuel prices and PV generation. Finally, an assessment of the capabilities of the utilised optimisation platform is conducted, and a theoretical discussion sheds some light on the proposal for an enhanced design tool addressing the identified issues

    Advanced fault location in MTDC networks utilising optically-multiplexed current measurements and machine learning approach

    Get PDF
    This paper presents a method for accurate fault localisation of DC-side faults in Voltage Source Converter (VSC) based Multi-Terminal Direct Current (MTDC) networks utilising optically-multiplexed DC current measurements sampled at 5 kHz, off-line continuous wavelet transform and machine learning approach. The technical feasibility of optically-based DC current measurements is evaluated through laboratory experiments using commercially available equipment. Simulation-based analysis through Matlab/Simulink® has been adopted to test the proposed fault location algorithm under different fault types and locations along a DC grid. Results revealed that the proposed fault location scheme can accurately calculate the location of a fault and successfully identify its type. The scheme has been also found to be effective for highly resistive fault with resistances of up to 500 Ω. Further sensitivity analysis revealed that the proposed scheme is relatively robust to additive noise and synchronisation errors

    Enhancing the genome editing toolbox: genome wide CRISPR arrayed libraries.

    Get PDF
    CRISPR-Cas9 technology has accelerated biological research becoming routine for many laboratories. It is rapidly replacing conventional gene editing techniques and has high utility for both genome-wide and gene-focussed applications. Here we present the first individually cloned CRISPR-Cas9 genome wide arrayed sgRNA libraries covering 17,166 human and 20,430 mouse genes at a complexity of 34,332 sgRNAs for human and 40,860 sgRNAs for the mouse genome. For flexibility in generating stable cell lines the sgRNAs have been cloned in a lentivirus backbone containing PiggyBac transposase recognition elements together with fluorescent and drug selection markers. Over 95% of tested sgRNA induced specific DNA cleavage as measured by CEL-1 assays. Furthermore, sgRNA targeting GPI anchor protein pathway genes induced loss of function mutations in human and mouse cell lines measured by FLAER labelling. These arrayed libraries offer the prospect for performing screens on individual genes, combinations as well as larger gene sets. They also facilitate rapid deconvolution of signals from genome-wide screens. This set of vectors provide an organized comprehensive gene editing toolbox of considerable scientific value

    Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia.

    Get PDF
    N6-methyladenosine (m6A) is an abundant internal RNA modification1,2 that is catalysed predominantly by the METTL3-METTL14 methyltransferase complex3,4. The m6A methyltransferase METTL3 has been linked to the initiation and maintenance of acute myeloid leukaemia (AML), but the potential of therapeutic applications targeting this enzyme remains unknown5-7. Here we present the identification and characterization of STM2457, a highly potent and selective first-in-class catalytic inhibitor of METTL3, and a crystal structure of STM2457 in complex with METTL3-METTL14. Treatment of tumours with STM2457 leads to reduced AML growth and an increase in differentiation and apoptosis. These cellular effects are accompanied by selective reduction of m6A levels on known leukaemogenic mRNAs and a decrease in their expression consistent with a translational defect. We demonstrate that pharmacological inhibition of METTL3 in vivo leads to impaired engraftment and prolonged survival in various mouse models of AML, specifically targeting key stem cell subpopulations of AML. Collectively, these results reveal the inhibition of METTL3 as a potential therapeutic strategy against AML, and provide proof of concept that the targeting of RNA-modifying enzymes represents a promising avenue for anticancer therapy
    • …
    corecore