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Abstract

This paper presents a method for accurate fault localisation of DC-side faults in Voltage Source Converter

(VSC) based Multi-Terminal Direct Current (MTDC) networks utilising optically-multiplexed DC current

measurements sampled at 5 kHz, off-line continuous wavelet transform and machine learning approach.

The technical feasibility of optically-based DC current measurements is evaluated through laboratory ex-

periments using commercially available equipment. Simulation-based analysis through Matlab/Simulinkr

has been adopted to test the proposed fault location algorithm under different fault types and locations along

a DC grid. Results revealed that the proposed fault location scheme can accurately calculate the location of

a fault and successfully identify its type. The scheme has been also found to be effective for highly resistive

fault with resistances of up to 500 Ω. Further sensitivity analysis revealed that the proposed scheme is

relatively robust to additive noise and synchronisation errors.

Keywords: Fault Location, Multi-Terminal Direct Current, Travelling Waves, Optical Sensors, Machine

Learning, Pattern Recognition.

1. Introduction

High Voltage Direct Current (HVDC) power transmission are becoming increasingly competitive com-

pared to high-voltage-alternating-current (HVAC) power transmission, especially for bulk power transmis-

sion over long distances. This is because of many commercial and technical advantages introduced by

HVDC trasmission systems, utilising the most recently developed voltage source converters. Those ad-

vantages include bulk power transfer (notably from offshore wind [1]) over long distances [2], upgrading

existing AC networks [3], interconnection of asynchronous grids and black start capability [4].
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HVDC networks based on Modular Multilevel Converters (MMCs) is becoming progressively more

favourable by the virtue of superior advantages, such as high efficiency, flexible control, scalability, and

remarkable power quality with low harmonic content [5]. Further technical and economical improvements

can arise by introducing MTDC systems which consist of more than two VSC stations and consequently

the formation of a DC grid [6].

The majority of the existing operational and planned HVDC links are point-to-point with two points

of connection with the AC networks. These connections are utilised for long distance power transmission

within a country or for interconnection among different countries. At present, there is only one MTDC

grid in operation located in Zhoushan, China, which was commissioned in 2013 [7]. However, with an

increased penetration of renewable energy sources, balancing the supply and demand is likely to be one

of the major challenges in future power systems [8]. Consequently, there is a growing need for meshed

interconnections between countries in order to effectively share the available power capacity and thereby

increase operational flexibility and security of supply. This has been raised as a major issue in Europe but

also in Asia and United States of America. Before MTDC grids are widely adopted, it is essential to analyse

the imposed potential challenges, like transient fault response [9], system integration, stability and power

flow control [10].

After the occurrence of a feeder fault on a transmission system, protection systems are expected to

minimise its detrimental effects, by initiating clearing actions such as selective tripping of circuit breakers.

Following the successful fault clearance, the adjacent action is the accurate estimation of its location with

regards to feeder’s length. This is of major importance as it will enable faster system restoration, diminish

the power outage time, and therefore enhance the overall reliability of the system. Therefore, this paper

deals with the challenges involved in fault location of DC-side faults in MTDC systems.

The proposed scheme is based on a network of distributed current sensors installed at each feeder of

an MTDC grid, and the subsequent travelling wave detection from DC current signatures. The accuracy

of the proposed scheme is enhanced by the adoption of a machine learning approach, based on a pattern

recognition scheme. The idea of distributed current sensors has been previously developed by the authors

in [11] for protection applications in MTDC networks. The structure has been significantly expanded to be

suitable for fault location applications in MTDC networks.

The remainder of the paper is organised as follows: Section 2 presents a literature review on the ex-

isting and proposed fault location techniques. Section 3 proposes and explains in detail the proposed fault

location scheme. Section 4 presents the results of a thorough simulation-based evaluation of the proposed

2



scheme. Section 5 introduces the optical sensing technology and presents a series of experimental results,

demonstrating the technical feasibility of optically-based DC current measurements. Finally, in Section 6

conclusions are drawn.

2. Fault Location in HVDC Systems

Travelling Waves (TWs) have been proposed as a very accurate solution for fault location both in AC and

DC networks. According to the number of measurement points, TW-based fault location can be divided into

single-ended and two-ended. The first one requires two consecutive waves to calculate the fault location.

The two-ended methods requires the first waves, captured and time-stamped from both ends of a feeder.

The basic principle of single-end TWs alongside with two graph theory-based lemmas are utilised in

[12] to locate the faults in MTDC networks. Nevertheless, high sampling frequency (1 MHz) is required,

while detecting the first wavefront could be challenging [13]. A two-ended method based on Wavelet

Transformation (WT) is utilised in [14] to locate faults in hybrid HVDC systems with both overhead lines

(OHLs) and cables. The method requires voltages and capacitor current measurements, sampled at 2 MHz.

Another application of WT is utilised in [15] to accurately locate the faults in star-connected MTDC

systems. The method necessitates measuring DC terminal currents and can eliminate the need of repeater

station placement at the network junctions. However, both methods presented in [14] and [15] suffer from

the need of time-synchronised measurements and high sampling frequency (2 MHz). Additionally, highly

resistive faults have not been investigated thoroughly. In [16] a TW-based method is proposed by utilising

voltage and current measurements from both ends of the faulted feeder. The method eliminates the need

of both synchronised measurements and estimation of line parameters, and has been found to be accurate

for both metallic and highly resistive faults (up to 500 Ω). However, there is a need for high sampling

frequency (1 MHz). The method proposed in [17] eliminates the need to identify the precise arrival time of

the surges. The proposed idea utilises the natural frequency of TWs (i.e. the dominant natural frequency in

the spectrum analysis of TWs). For the execution of the algorithm, voltage and current measurements from

one end (sampled at 100 kHz) are required. Even though the method has been found to be accurate, it has

been tested only for highly resistive faults up tp 50 Ω.

Different from those methods which utilise TWs a few others can be found in the literature. In [18] the

voltage distribution across the Burgeron line model is calculated in order to calculate the location of the

fault. The sampling frequency required is only 6.4 kHz, while the method is accurate for long transmission

lines and with highly resistive faults up to 500 Ω. However the method still requires time-synchronised
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Table 1: Review of challenges related to fault location categories.

Fault location category Challenges

Travelling waves

• Requirement of high sampling frequency.

• Difficulties in detection of initial wave.

• Speed of propagation should be known.

• Impact of highly-resistive faults.

• Need for time-synchronised measurements (two-ended method).

Reflectometry

• Need for external equipment.

• High sampling frequency in the range of MHz to GHz.

• Site visit to the feeder’s terminal and assembly/disassembly of testing equipment.

Learning-based

• Training of the system is required. Since fault records are not always

sufficient (or sometimes not available at all) the training is usually

implemented by simulation-based iterative studies. This could raise

concerns with regards to the reliability of the system training.

measurements. The article in [19] reviews the methods for diagnosing and locating faults in submarine

power cables using the principles of reflectometry [20] , with case studies relevant to very long HVDC

cables. Emphasis is put on the differences in the conditions and methods between locating a fault on a

submarine cable from land cables, and the best practices for diagnosing and locating these types of faults

are discussed. Even though that actual methodologies and test results are not presented thoroughly, it can

be deduced that the need for external equipment and high sampling rates are drawbacks of these methods.

A special category of fault location practices (which is highly-related to the focus of this paper) in-

corporates the utilisation of learning-based approaches. Even though that such intelligent methods have

been extensively used for localisation and classification of faults in AC networks [21, 22, 23, 24, 25], there

is a limited number of publications which indicate their appropriateness for analysis of DC-side faults

[13, 26, 27]. For example, based on post-fault voltage measurements sampled at 80 kHz, a method based

on voltage similarity is proposed in [13]. The distance is calculated by calculating the Pearson coefficients

with pre-simulated test patterns. Based on TWs and Support Vector Machine (SVM) another method is

proposed in [26]. The method is single-ended and requires both current and voltage measurements. How-

ever the study cases consider fault resistance values up to 70 Ω, while the sampling frequency needs are not

clearly stated.

Most of the fault location methods for HVDC lines can be classified in three major categories namely,

‘TW-based’, ‘reflectometry-based’ and ‘learning-based’. A literature review of the methods falling under

4



the three aforementioned categories revealed that there is a wide selection of options which can accurately

calculate the location of a fault. However, they are all accompanied by some technical challenges and

barriers which are summarised in Table 1.

3. Proposed Fault Location Method

The fault location algorithm proposed in this paper is based on the availability and feasibility of optically-

multiplexed current measurements (further analysis will be provided in Section 5). Such an experimental

arrangement has been used previously in [11] for high-speed protection applications in MTDC networks.

Therefore, the scheme has been significantly expanded to be suitable for fault location applications in

MTDC networks.

The fault location technique consists of three main stages and utilises data buffers to store and process

DC current records from all the available sensors along the faulted line. The flow chart of the fault location

algorithm is depicted in Figure 6 and the stages are analysed in detail in the following subsections. It

should be noted that prior to any signal analysis for the calculation of fault location, the optical signals are

modulated and converted in DC current/voltage. This will be further analysed in Section 5.

3.1. Stage I: Fault Classification

Fault type is classified based on the post-fault DC current signatures. The possible types of fault include

Pole-to-Pole Fault (PPF), Positive pole-to-Ground Fault (PGF) and Negative pole-to-Ground Fault (NGF).

These have been assumed based on the relevant technical literature, addressing challenges arising from DC-

side faults in VSC-based HVDC grids. The fault classification is implemented by utilising the positive and

negative pole post-fault DC currents. For symmetric monopole systems, when a PPF occurs both positive

and negative pole currents are expected to have fairly equal response in terms of amplitude. However, when

a pole-to-ground fault occurs the current level of the faulted pole reaches significantly higher values (see

Figure 1).

In order to justify the above, a PPF, a PGF and a NGF have been applied at 107 km on a 300 km HVDC

transmission line. The resulting DC current traces are depicted in Figure 2. It is evident from the resulting

DC current signatures that the fault can be classified by comparison between positive and negative pole

currents. Since such measurements are not single values but they are rather a set of measurements over a

short time window (e.g. around 5 ms), a comparison can be easier accelerated by calculating their area. The

area of positive and negative pole currents are calculated by the integrals in equations 1 and 2 respectively.
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(a) Pole-to-pole fault (b) Positive pole-to-ground (c) Negative pole-to-ground

Figure 1: Illustration of different fault types for fault classification.

A+
Idc =

∫ tend

t0

|i+dc|dt (1)

A−

Idc =

∫ tend

t0

|i−dc|dt (2)

where, t0 and tend denote the starting and ending time of the available data windows, |i+dc| represent |i−dc| are

the absolute value of positive and negative pole currents, respectively.

Since there is no formulation of the DC current traces, the trapezoidal method with unit spacing has

been adopted for the calculation of their area. For the DC current traces depicted in Figure 2, the integrals

of positive and negative pole currents have been calculated and listed in Table 2.

Table 2: Results of numerical integration of positive and negative pole currents.

Fault type A+
Idc A−

Idc

PPF 9,129,797.5 9,129,798,8

PGF 4,202,780.1 805,540.4

NGF 805,558.7 4,202,760.8

It is evident from Table 2 that in the case of a PPF, the area of both positive and negative pole currents

are almost equal. On the contrary, for any other type of fault the area of the DC current for the faulted pole

is significantly higher than the healthy one. In order to prevent any miscalculation due to induced noise and

measurement uncertainties, the equality criterion for PPF has included a tolerance of ±5%.

3.2. Stage II: Faulted Segment Identification

In this stage the closest sensors upstream and downstream to the fault are identified (i.e. the faulted

segment is narrowed-down between two adjacent sensors). This is achieved by calculating the differential

current Idiff for every pair of adjacent sensors, as presented in equation 3.
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Figure 2: Simulation results (DC current signatures) of different fault types for fault classification.

Idiff(s) = idc(s) − idc(s+1) (3)

where, s is the index of each sensor.

Considering a typical fault, as illustrated in Figure 3, it can be seen that the closest sensors to the fault

are S4 and S5. The algorithm will start a routine to calculate the differential current for each pair of adjacent

sensors. The resulting differential currents for this fault are indicated in Figure 4.

It is evident that the differential current Idiff(4) (derived using measurements from sensors S4 and S5)
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Figure 3: Fault occurrence on a 300 km transmission line incorporating distributed current sensors.
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Figure 4: Differential currents derived for the fault case shown in Figure 3.

reaches significantly higher values than any other differential current. Consequently, a comparison among

all the differential currents would provide the closest sensors to the fault. Instead of comparing the resulting

differential currents with a pre-determined thresholds, their integral has been alternatively used according

to equation 4.

AIdiff(s) =

∫ tend

t0

|Idiff(s)|dt (4)

For clarity of the above statement, the area of the differential currents presented in Figure 4 has been

calculated according to equation 4. The resulting numerical calculations are presented in Table 3. It can be

seen that the area of the differential current Idiff(4) is significantly higher than the others, and hence, the

faulted segment can be identified confidently.

Table 3: Numerical integration results of differential currents presented in Figure 4.

Sensors S1 − S2 S2 − S3 S3 − S4 S4 − S5 S5 − S6 S6 − S7 S7 − S8 S8 − S9 S9 − S10 S10 − S11

Idiff Idiff(1) Idiff(2) Idiff(3) Idiff(4) Idiff(5) Idiff(6) Idiff(7) Idiff(8) Idiff(9) Idiff(10)

AIdiff(s) [10
6] 1.12 1.01 0.96 15.46 0.51 0.65 0.71 0.73 0.72 0.76

Finally, this stage will generate two outputs; Sup and Sdn, which represent the index of the closest

sensors upstream and downstream to the fault, respectively.
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3.3. Stage III: Fault Location Calculation

The final stage of the proposed fault location algorithm is dedicated to the location of the fault. As the

sensors closest to the fault have been identified in Stage II, captured post-fault data from all the sensors are

utilised. In fact, the data are used to apply WT (WT is explained in detail in Appendix I) to locate the fault

using two-ended technique between all the possible combinations upstream and downstream to the fault.

Taking the example illustrated in Figure 5, it can be concluded that a two-ended TW-based fault location

technique can be applied to every pairs of sensors, one at the upstream (i.e. sensors S1 to S4) and another

at the downstream (i.e. sensors S5 to S11) of the fault.

Figure 5: Bewley’s Lattice diagram integrating distributed optical sensing network.

Consequently, the fault location results are calculated initially in the form of a matrix which, hereinafter,

is referred to as ‘Initial Fault Location Matrix’ (IFLM), and its dimensions are determined by the faulted

segment. Considering the fault case illustrated in Figure 5, the nearest sensors to the fault are S4 and

S5. This will result in an IFLM with number of rows and columns being equal to the number of sensors

upstream and downstream to the fault, respectively, as illustrated in Table 4.

Table 4: IFLM for a fault occurring between sensors S4 and S5 (fault case depicted in Figure 5).

S5 S6 S7 S8 S9 S10 S11

S1 Df(1:5) Df(1:6) Df(1:7) Df(1:8) Df(1:9) Df(1:10) Df(1:11)

S2 Df(2:5) Df(2:6) Df(2:7) Df(2:8) Df(2:9) Df(2:10) Df(2:11)

S3 Df(3:5) Df(3:6) Df(3:7) Df(3:8) Df(3:9) Df(3:10) Df(3:11)

S4 Df(4:5) Df(4:6) Df(4:7) Df(4:8) Df(4:9) Df(4:10) Df(4:11)

The cell contents of such a table correspond to the fault location as calculated by the two-ended TW-

based between the sensors (for example, the value of Df(1:5) corresponds to the fault location as calculated
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between sensors S1 and S5).

The generic two-end method for locating faults is presented in equation 5:

df =
1

2
(L+ dtV ) (5)

where, df is the fault distance; L is the total length of the line; dt the time difference of the arrival of waves;

and, V the propagation velocity.

Considering a fault between sensors Sup and Sdn as illustrated in Figure 5 (S4 and S5 at this case),

the waves are detected at the time instances t1(Sup) and t1(Sdn), respectively (t1(S4) and t1(S5) at this case).

Hence, the location of fault between sensors Sup and Sdn can be calculated using equation 6:

df(sup−sdn)
=

1

2

(
L

ns − 1
+ dt(Sup,Sdn) V

)

(6)

where, df(sup−sdn)
is the distance of the fault between sensors Sup and Sdn, dt(Sup,Sdn) is the time difference

between arrival of the two waves at sensors Sup, and Sdn and ns is the total number of sensors installed on

the transmission line.

The exact fault location taking as reference the left side of the line is calcualted by equation 7 (when

fault is closest to the sensor Sup), and equation 8 (when fault is closest to the sensor Sdn).

Df(up:dn) =
L

ns − 1
(Sup − 1) + df(sup−sdn)

(7)

Df(dn:up) =
L

ns − 1
(Sdn − 1)− df(sdn−sup)

(8)

Equations 7 and 8 are used for all possible pairs of sensors, one at the upstream and another at the

downstream of the fault in order to generate the fault matrix, as shown in Table 4.

Due to the reduced sampling frequency, (i.e. 5 kHz) it is expected that the fault location values contained

in IFLM will have increased errors. One solution to reduce the error is the utilisation of much higher

sampling frequency in the range of MHz. However, for the proposed distributed current sensing scheme

this would require an extreme upgrade to the equipment accompanied with increased complexity in signal

processing and cost. Therefore, on an attempt to reduce the potential fault location errors resulting from

low sampling frequency, while maintaining the cost to the barely minimum, a machine learning approach

is introduced in Stage III (see Figure 6 steps c to e).
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Figure 6: High level fault location algorithm flow chart.

The machine learning approach requires training samples, which are pre-simulated faults along a trans-

mission line. For each training sample, (i.e. fault case) a ‘Training Sample Fault Location Matrix’ (TSFLM)

and a ‘Compensating Fault Location Matrix’ (CFLM) is calculated. The former is the same as described

before (i.e. IFLM) and shown in Table 4 (i.e. table with fault location calculated for each measurement from

different sensors sampled at 5 kHz). The latter is a matrix which aims to compensate for errors calculated

and included in the TSFLM. Specifically, the CFLM values are calculated having the knowledge fault lo-

cation, as presented in equation 9. Therefore, when CFLM is multiplied by the TSFLM, (via element-wise

multiplication) the resulting table is expected to have zero error.

CFLM =
Known fault location

TSFLM
(9)
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Below is a numerical example taking as guiding case the fault presented in Figure 5 and the fault location

assumed to be known (i.e. 107 km).










1.0405 0.9900 1.0030 0.9460 0.9762 1.0570 0.9788

1.0632 0.9690 1.0505 1.0283 1.0070 1.0533 0.9852

0.9769 0.9955 0.9967 1.0376 1.0379 1.0477 1.0617

1.0266 0.9904 0.9486 0.9864 0.9368 1.0439 0.9389











︸ ︷︷ ︸

CFLM

=











102.84 108.08 106.68 113.11 109.60 101.23 109.31

100.64 110.43 101.86 104.05 106.26 101.59 108.61

109.53 107.49 107.36 103.13 103.09 102.13 100.78

104.23 108.04 112.79 108.47 114.22 102.50 113.97











−1

︸ ︷︷ ︸

TSFLM

·107

When a fault with unknown fault location has occurred, as described before, the segment has been iden-

tified and the IFLM has been generated. A routine will then be initiated and will calculate the correlation

coefficients of the IFLM (with the unknown fault location) and the TSFLM of the training samples.

The generic expression of Pearson’s correlation coefficients of two variables K and U is expressed

through equation 10:

ρ(K,U) =
1

N − 1

N∑

j=1

(
Kj − µK

σK

)(
Uj − µU

σU

)

(10)

where, ρ(K,U) is the Pearson correlation coefcient of signals K and U (with ρ(K,U) ∈ [-1,+1]), K and

U are the variables (simulated and sampled Fault Matrices at this case), N denotes the scalar observations,

µK , σK , µU and σU are the mean and standard deviation of K and U respectively.

Taking into account that K and U correspond to IFLM (case with unknown fault location) and TSFLM

(training samples with known fault location) respectively, equation 10 is rewritten as follows:

ρ(IFLM, TSFLM) =
1

N − 1

N∑

j=1

(
IFLMj − µ(IFLM)

σ(IFLM)

)(
TSFLMj − µ(TSFLM)

σ(TSFLM)

)

(11)

The correlation coefficients is used like a measure of similarity and will provide the ability to match

a simulated case (with unknown fault location) with any of the training samples (where the fault location

is known and its CFLM can be used). Values of -1 and +1 impose a perfect negative and positive linear

correlation, respectively, while the value of zero indicates no correlation at all. If two matrices are alike

high values close to +1 are expected.

When there is a match between two matrices then the CFLM from the corresponding training sample is

selected. The matching procedure is achieved by comparing the resulting similarity ρ(IFLM, TSFLM)

with a predefined threshold. For the cases presented in this paper, those which have more than 90 %

similarity are selected, forming the sub-set ΦC .

The sub-set ΦC is used to produce a new matrix termed here are as ‘Normalised Fault location Matrix’

(NFLM) and is calculated according to equation 12.
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NFLM = IFLM ×

∑

z∈ΦC

CFLM(z) e−(1−ρ(IFLM,TSFLM))2

∑

z∈ΦC

e−(1−ρ(IFLM,TSFLM))2

︸ ︷︷ ︸

weighted averaging function

(12)

The NFLM contain values of fault location which are normalised closer to the actual fault location, and

hence, the errors are expected to be remarkably lower. This is established by multiplying the IFLM by a

weighted averaging function. Such a function is utilised to influence on the result of different matching

patterns (i.e. sub-set ΦC) and apply different ‘weight’. Greater influence is expected to be applied at zero

metric distance (i.e. when similarity ρ(IFLM, TSFLM) = 1) and the function should fade out as the dis-

tance increases according to the chosen kernel. For the studies in this paper, the averaging function has been

built upon exponential kernels [28, 29]. It should be noted that the matrix operations (i.e. multiplication,

division, etc.) in equation 12 has been carried out in a element-wise manner.

Finally, the calculated fault distance C.Fd is estimated by averaging the NFLM, as shown in equation

13:

C.Fd = NFLM (13)

The calculated values of fault location included in NFLM, are expected to deviate from the actual fault

location. However, it is difficult to predict or calculate which values of NFL are closer or further to the actual

fault location. Consequently, it is cumbersome and dicey to make a decision or conclude the fault distance

from a single value. This is especially risky when a set of values might contain outliers (i.e. observation

points that are much more distant from other observations). In order to address such challenge, and get a

representative sample taking into account the contribution of all the observation points in the group, the

averaging function has been utilised.

It should be highlighted that any concerns regarding the complexity of any machine learning approach

may be eliminated, when the application is related to fault location. This is due to the fact that fault location

is mostly related with accuracy, and there is always a wide time margin for off-line calculations.

4. Simulation-based Analysis

4.1. MTDC Network

A five-terminal HVDC has been utilised in the simulation case studies as illustrated in Fig. 7, which

have been adopted according to the Twenties Project case study on DC grids [30]. The MTDC network is
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equipped with five MMCs operating at ±400 kV (symmetric monopole) and current limiting inductors at

each transmission line end. The characteristics of the AC and DC networks are described in detail in Table

5.

Figure 7: Five-terminal case study HVDC network.

Optical current sensors have been installed on each transmission line current every 30 kilometres (in-

cluding the terminals, where the measurement and fault location station is located). Therefore, for lines 1

to 5, seven, five, eleven, six and four DC current sensors have been utilised, respectively. The fault location

results are reported taking as a reference point the measurements and fault location station.

Table 5: DC and AC Network Parameters.

Parameter Value

DC voltage [kV] ± 400

DC inductor [mH] 150

Line resistance [Ω/km] 0.015

Line inductance [mH/km] 0.96

Line capacitance [µF/km] 0.012

Line lengths (1 to 5) [km] 180, 120, 300, 150, 90

AC frequency [Hz] 50

AC short circuit level [GVA] 40

AC voltage [kV] 400

It should be noted that in order to emulate any measurement errors originating from induced noise, exter-

nal disturbances and measurements uncertainties, the measurements have been contaminated with artificial,

random white noise.
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The MTDC network including transmission lines, converters, current limiting inductors and network of

optical current sensors is identical to the one used in [11] for protection studies.

4.2. Modular Multi-level Converters

The models of power converters utilised in these studies are based on 401-level Type 4 half bridge

(HB) MMCs which have been developed according to guidelines and approaches described in [31, 1]. Such

representation has been validated against fully detailed models and has been demonstrated to accurately

represent the converter behaviour during steady-state, transient and fault conditions, while remaining nu-

merically stable and computationally efficient. Figure 8 illustrates the equivalent of Type 4 for one phase.

Figure 8: Equivalent of the MMC Type 4 Model.

Table 6: DC and AC Network Parameters.

Parameter Value

DC voltage [kV] ± 400

AC voltage [kV] 400

MMC levels 401

MMC arm inductance [p.u.] 0.1

MMC equivalent arm capacitance [µF] 20.84

The converter response is achieved through controlled voltage and current sources. A fault controller is

also included which bypasses the sub-modules when the maximum current of the IGBTs is exceeded. In this

case, the converter behaves like an uncontrolled rectifier. Due to imbalanced voltage conditions, circulating

currents are generated inside each MMC which increase current stress, introduce current distortion (arm

currents), and produce additional conduction losses. To eliminate such currents, a Proportional Resonant,
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Circulating Current Suppression Controller (PR-CCSC), as described in [32], has been integrated into the

control system.

4.3. Obtaining Training Data

The training fault patterns, have been generated by applying a series of PPF, PGFs and NGFs at all

different transmission lines of the network depicted in Figure 5. The faults have been triggered at various

distances along the feeders and for a wide range of fault resistances Rf from 0 Ω to 500 Ω.

It should be noted that when adopting learning-based methods for power system studies, the generation

of the training data is considered one of the main challenges (this is also highlighted in Table 1). In the

case of an actual field project, the procedure of obtaining training data would be similar (i.e. development

of a system model and then implementation of fault studies). However, the modelling of the system would

have to be carried out considering the actual systems specification (i.e. voltage level, line parameters, etc.).

Additional training data could be obtained from records of actual faults (with known location) during the

commissioning of line fault-location and protection systems [15].

4.4. Fault Location Results

PPFs and PGFs have been triggered at all DC lines and at various locations. The reported fault location

errors have been calculated according to Equation 14.

error % =
C.Fd − A.Fd

LFL
· 100% (14)

where, C.Fd and A.Fd represented the calculated and actual fault distance; and LFL denotes the length of

the faulted line.

Tables 7, 8 and 9 illustrate the fault classification, segment identification and location results for PPFs,

PGFs and NGFs, respectively. For such studies, Haar mother wavelet has been utilised with a scaling

factor of α = 10. It should be noted that 5 ms is considered for the available data window of mea-

surements(predicted time window for the available post-fault measurements). This is due to the fact that

protection systems are expected to clear any DC-side faults around this time slot (including detection and

physical isolation).

Satisfactory results have been achieved for both type of faults at all locations. In all cases, the type of

fault has been classified correctly while the segment of the fault has been identified precisely. The minimum,

maximum and average error for PPFs reached values of 0.0000 %, 0.1997 % and 0.0797 %, respectively.
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For PGFs those errors correspond to 0.0100 %, 0.2310 % and 0.0987 % and for NGF to 0.0012 %, 0.8860 %

and 0.1357 %, respectively.

Table 7: Fault classification, segment identification and location results for pole-to-pole faults.

Line
Fault

distance [km]

Reported

fault type

Reported

sensor Sup

Reported

sensor Sdn

Reported fault

location [km]

Fault location

error [%]

1 31 PPF 2 3 31.1343 0.0746

1 90 PPF 3 4 89.9737 -0.146

1 127 PPF 5 6 127.0099 0.0055

1 132 PPF 5 6 131.8678 -0.0735

1 142 PPF 5 6 141.7413 -0.1437

1 157 PPF 6 7 156.8166 -0.1019

2 16 PPF 1 2 15.8657 -0.1119

2 30 PPF 1 2 29.8878 -0.0935

2 47 PPF 2 3 47.1322 0.1102

2 97 PPF 4 5 97.1325 0.1104

2 112 PPF 4 5 111.8639 0.1134

3 20 PPF 1 2 20.5992 0.1997

3 58 PPF 2 3 58.0926 0.0309

3 128 PPF 5 6 128.0734 0.0245

3 176 PPF 6 7 176.1322 0.0441

3 212 PPF 8 9 212.1343 0.0448

3 296 PPF 10 11 296.0000 0.0000

4 23 PPF 1 2 23.0057 0.0038

4 38 PPF 2 3 38.0886 0.0591

4 75 PPF 3 4 75.2296 0.1531

4 97 PPF 4 5 97.2136 0.1424

4 134 PPF 5 6 134.1343 0.0895

5 8 PPF 1 2 7.9578 -0.0469

5 30 PPF 1 2 30.0549 0.0610

5 45 PPF 2 3 45.0149 0.0166

5 82 PPF 3 4 82.0397 0.0441
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Table 8: Fault classification, segment identification and location results for positive pole-to-ground faults.

Line
Fault

distance [km]

Reported

fault type

Reported

sensor Sup

Reported

sensor Sdn

Reported fault

location [km]

Fault location

error [%]

1 23 PGF 1 2 23.1560 0.0867

1 53 PGF 2 3 53.2420 0.1345

1 107 PGF 4 5 107.1322 0.0735

1 112 PGF 4 5 112.1592 0.0885

1 157 PGF 6 7 156.8166 -0.1019

2 8 PGF 1 2 7.7907 -0.1744

2 43 PGF 2 3 43.1343 0.1119

2 60 PGF 2 3 59.9610 -0.0325

2 73 PGF 3 4 72.8678 -0.1102

2 112 PGF 4 5 111.8639 -0.1134

3 35 PGF 2 3 35.1343 0.0448

3 84 PGF 3 4 83.6381 -0.1206

3 179 PGF 6 7 179.0300 0.0100

3 198 PGF 7 8 197.6388 -0.1204

3 220 PGF 8 9 220.4008 0.1336

3 267 PGF 9 10 267.0690 0.0230

3 280 PGF 10 11 279.3070 -0.2310

4 18 PGF 1 2 18.1322 0.0881

4 38 PGF 2 3 38.0886 0.0591

4 75 PGF 3 4 75.2296 0.1531

4 102 PGF 4 5 102.1343 0.0895

4 142 PGF 5 6 141.7071 -0.1953

5 17 PGF 1 2 17.1322 0.1469

5 30 PGF 1 2 30.0549 0.0610

5 45 PGF 2 3 44.9776 0.0249

5 82 PGF 3 4 81.9658 0.0380
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Table 9: Fault classification, segment identification and location results for negative pole-to-ground faults.

Line
Fault

distance [km]

Reported

fault type

Reported

sensor Sup

Reported

sensor Sdn

Reported fault

location [km]

Fault location

error [%]

1 12 NGF 1 2 12.1413 0.0785

1 30.5 NGF 2 3 30.5261 0.0145

1 85 NGF 3 4 84.7860 -0.1189

1 137 NGF 5 6 137.1737 0.0965

1 163 NGF 6 7 162.9978 -0.0012

2 9 NGF 1 2 8.9238 -0.0635

2 31 NGF 2 3 31.0126 0.0105

2 68.2 NGF 3 4 68.1748 -0.0210

2 100 NGF 4 5 100.9580 0.7983

2 117 NGF 4 5 116.9158 -0.0702

3 18.8 NGF 1 2 18.7910 -0.0030

3 31 NGF 2 3 31.0510 0.0170

3 68.2 NGF 3 4 68.1313 -0.0229

3 155.5 NGF 6 7 155.7169 0.0723

3 238.9 NGF 8 9 238.5997 -0.1001

3 277.7 NGF 10 11 277.6160 -0.0280

3 297.5 NGF 10 11 297.8567 0.1189

4 5.5 NGF 1 2 5.7595 0.1730

4 66.6 NGF 3 4 66.9315 0.2210

4 99 NGF 4 5 98.8760 -0.0827

4 123 NGF 5 6 123.1289 0.0859

4 148.8 NGF 5 6 148.6092 -0.1272

5 11.3 NGF 1 2 12.0974 0.8860

5 45 NGF 2 3 44.9199 -0.0890

5 66.6 NGF 3 4 66.7160 0.1289

5 72 NGF 3 4 71.9103 -0.0997
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4.5. Impact of fault resistance Rf

In order to further scrutinise the response of the proposed fault location algorithm, the case studies

presented in Tables 7, 8 and 9 have been repeated for different values of fault resistance Rf .

Table 10: Average errors for PPF, PGF and NGF and different fault resistance values.

Rf [Ω] 0 25 50 100 200 500

PPF 0.0797 0.0816 0.0820 0.0825 0.8026 0.0839

PGF 0.0987 0.1020 0.1020 0.1054 0.1055 0.1063

NGF 0.1357 0.1404 0.1411 0.1422 0.1452 0.1466

The numerical results in terms of average values of error are presented in Table 10. Consistently satis-

factory results have been reported with no significant increase in the average error even for highly resistive

faults when Rf = 500 Ω. It can be concluded that the proposed fault location scheme is relatively robust to

highly resistive faults.

It should be noted that any difference in the accuracy between different types of fault does not originate

to any electrical asymmetry in the system. Any mismatch in the results might be expected due to artificial

noise in measurements (as explained in Section 4.1), signal processing and simulation time in conjunction

with distance to fault.

4.6. Impact of Mother Wavelet Ψ and scaling factor α

In order to extend the response of the proposed fault location algorithm, the pole-to-pole case studies

presented in Table 7 have been repeated for different mother wavelets Ψ and scaling factors α. The results

presented in Table 11 show a variety of errors including minimum (Min.), maximum (Max.) and average

(Avg.).

Table 11: Fault location errors for PPFs and for different values of scaling factor α and mother wavelets Ψ.

@
@
@

@@
Ψ

α 4 8 10 12 16 32 64

Min. Max. Avg. Min. Max. Avg. Min. Max. Avg. Min. Max. Avg. Min. Max. Avg. Min. Max. Avg. Min. Max. Avg.

Haar 0.0000 0.3642 0.0746 0.0000 0.3642 0.0632 0.0000 0.1997 0.0797 0.0000 0.1997 0.0577 0.0000 0.2886 0.0776 0.0028 0.8249 0.1329 0.0000 1.4980 0.2823

db1 0.0000 0.3642 0.0746 0.0000 0.3642 0.0632 0.0000 0.1997 0.0522 0.0000 0.1997 0.0577 0.0000 0.2886 0.0775 0.0028 0.8249 0.1329 0.0000 1.4980 0.2823

db2 0.0000 2.500 0.4720 0.0000 1.4990 0.0300 0.0000 1.7020 0.0274 0.1658 4.8334 2.5190 0.0000 1.8320 0.4587 0.0000 2.7780 0.5342 0.1666 4.8329 2.5190

db3 0.0000 3.7430 0.2634 0.0000 4.9420 2.2620 0.1662 4.8330 2.5190 0.1665 4.8330 2.5190 0.0767 4.9490 2.5450 0.1667 4.8331 2.5190 0.0112 6.0940 2.5410

sym1 0.0000 0.3642 0.0746 0.0000 0.3642 0.0633 0.0000 0.1997 0.0522 0.0000 0.1997 0.0577 0.0000 0.2886 0.0776 0.0028 0.8249 0.1329 0.0000 1.4980 0.2823

sym2 0.0000 2.5000 0.4720 0.0000 1.4990 0.0300 0.0000 1.7020 0.0274 0.1667 4.8330 2.5190 0.0000 1.8320 0.4587 0.0000 2.7780 0.5342 0.1667 4.8330 2.5190

sym3 0.1669 4.8332 2.5190 0.0000 5.200 1.4180 0.1661 4.8329 2.5190 0.1667 4.8332 2.519 0.0261 5.4510 2.5920 0.1671 4.8331 2.5190 0.0107 5.4740 2.5420

sym4 0.0000 1.4130 0.1450 0.1667 4.8330 2.5190 0.0000 2.0090 0.1062 0.1667 4.8330 2.519 0.0000 5.2780 1.5720 0.1667 4.8328 2.5190 0.1257 4.8740 2.5180

coif1 0.1667 4.8330 2.5190 0.0000 1.5740 0.0645 0.0000 2.3360 0.3758 0.0000 2.5470 0.5144 0.0056 2.4310 0.6078 0.1670 4.7930 2.6870 0.0255 8.4790 2.7730

coif2 0.1669 4.8330 2.5190 0.1667 4.8330 2.5190 0.1667 4.8330 2.5190 0.1659 4.8330 2.5190 0.1667 4.8327 2.5190 0.0000 4.7200 2.05000 0.1433 4.8570 2.5150
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The shortcoming of such thorough study is that for the proposed fault location algorithm Haar, db1

and db2 mother wavelets with a scaling factor of (or around) α = 10 are the best compromises between

minimum, maximum and average error.

4.7. Impact of Transmission Line Loading

In the interest of assessing the performance of the proposed scheme under the influence of different

DC line load currents, the case studies described in Section 4.4 (whose corresponding numerical results

are included in Tables 7, 8 and 9) have been repeated. In order to achieve different load conditions on the

transmission lines, power exchange of the converters has been changed. In particular, as presented in Table

12, four different scenarios have been considered (for reference, it should be noted that Scenario II includes

the results presented previously in Section 4.4).

Table 12: Active power set-points enabling different loading conditions of transmission lines.

Converter
Scenario

I II III IV

MMC1 Vdc control

MMC2 -0.40 GW -0.80 GW -1.20 GW -1.6 GW

MMC3 -0.35 GW -0.70 GW -1.05 GW -1.4 GW

MMC4 +0.25 GW +0.50 GW +0.75 GW +1.0 GW

MMC5 +0.25 GW +0.50 GW +0.75 GW +1.0 GW

Positive values denote that power is imported into DC grid (i.e. converter operates in rectifier mode),

while negative values indicate that power is exported to AC grid (i.e. converter operates in inverter mode).

The control mode of MMC1 has been set to ‘DC voltage’ and hence the power exchange is defined by the

state of DC voltage (equivalent to slack bus in AC systems). All the remaining converters (i.e. MMC2 to

MMC5) operate in ‘active power’ control mode with unity power factor, where the set-points of power are

directly assigned.

Fault location results (in terms of average error) are presented separately for each line, loading scenario

and fault type in Table 13. By observing the resulting fault location values, it can be observed that the

accuracy is hardly affected by the loading conditions of transmission lines. Taking as reference Scenario II,

the deviation of fault location values hovers randomly around +0.53 % and −0.65 %.

Such imperceptible deviation does not emanate from different loading conditions of transmission lines,

but it is rather a result of the random and artificial white noise added in the measurements. This is due

the fact that the distance estimation of the proposed scheme depends on the time characteristics of current
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Table 13: Fault location results for different loading conditions of transmission lines.

Scenario Line
Average error [%]

PPF PGF NGF

I

1 0.0910 0.0966 0.0621

2 0.1079 0.1090 0.1916

3 0.0571 0.0972 0.0515

4 0.0898 0.1176 0.1386

5 0.0420 0.0677 0.3024

II

1 0.0909 0.0970 0.0619

2 0.1079 0.1085 0.1927

3 0.0573 0.0976 0.0517

4 0.0896 0.1170 0.1380

5 0.0422 0.0677 0.3009

III

1 0.0914 0.0964 0.0622

2 0.1073 0.1088 0.1918

3 0.0576 0.0974 0.0518

4 0.0896 0.1175 0.1385

5 0.0421 0.0675 0.3014

IV

1 0.0907 0.097 0.0618

2 0.1080 0.1086 0.1921

3 0.0575 0.0981 0.0518

4 0.0897 0.1166 0.1377

5 0.0420 0.068 0.3016

travelling waves (as also expressed by equations 6, 7 and 8), and not on the amplitude of DC current. Such

time characteristics are not affected by the increasing or decreasing amplitude of DC current, and hence the

proposed scheme is robust against different loading conditions of transmission lines.

4.8. Investigation of Excessive Noise

In the interest of investigating the performance of the proposed fault location method under the influence

of noise in current measurements, the studies presented in Section 4.4 have been repeated. In particular, DC

current measurements have been contaminated with increasing artificial noise of specific Noise-to-Signal-

Ratio (NSR), starting from noise-less signal (i.e. infinite NSR) until 20 dB.

The resulting accuracy of the fault location estimation is presented in Table 14. It can be observed that

lower dB values (corresponding to higher level of noise), have inescapably a negative effect on the accuracy.

However, the resulting error increases by a factor in the range of 1.7 % for the NSR reaching 20 dB, which

can be considered relatively low. Consequently, it can be concluded that the proposed fault location scheme

is relatively robust to excessive noise.
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Table 14: Fault location results for increasing values of noise.

SNR [dB] Line
Average Error [%]

SNR [dB] Line
Average Error [%]

PPF PGF NGF PPF PGF NGF

∞

1 0.0909 0.097 0.0619

50

1 0.0912 0.0975 0.0621

2 0.1079 0.1085 0.1927 2 0.1082 0.109 0.1934

3 0.0573 0.0976 0.0517 3 0.0576 0.098 0.0519

4 0.0896 0.117 0.1380 4 0.0899 0.1175 0.1385

5 0.0422 0.0677 0.3009 5 0.0423 0.068 0.3021

80

1 0.0908 0.097 0.0619

40

1 0.0914 0.0976 0.0623

2 0.1078 0.1085 0.1928 2 0.1085 0.1092 0.1939

3 0.0573 0.0976 0.0517 3 0.0576 0.0981 0.052

4 0.0897 0.117 0.1380 4 0.0901 0.1176 0.1387

5 0.0422 0.0677 0.3009 5 0.0424 0.0681 0.3023

70

1 0.0912 0.0971 0.0621

30

1 0.0912 0.0973 0.0622

2 0.1082 0.1087 0.1934 2 0.1083 0.109 0.1934

3 0.0574 0.098 0.0518 3 0.0576 0.0983 0.0521

4 0.0897 0.1174 0.1383 4 0.0902 0.1176 0.1391

5 0.0423 0.0679 0.3015 5 0.0424 0.068 0.302

60

1 0.0911 0.0972 0.0621

20

1 0.0924 0.098 0.0629

2 0.1082 0.1088 0.1933 2 0.1096 0.11 0.1948

3 0.0575 0.0979 0.0518 3 0.058 0.0987 0.0523

4 0.0898 0.1174 0.1384 4 0.0911 0.1182 0.1402

5 0.0423 0.0678 0.3021 5 0.0429 0.0684 0.3052

The reason behind the immunity to noise of the proposed scheme, originates from the fact that DC

current measurements are filtered prior to any other signal processing function. This is illustrated in Figure

6 in ‘signal conditioning’ block, which is also analysed in Appendix II and most significantly, proved

experimentally in Section 5.3. Moreover, as discussed previously, the pattern recognition approach aids to

the reduction of fault location errors arising from low sampling frequency and expectantly from excessive

noise.

4.9. Impact of HVDC Protection and Control Schemes

When a fault occurs on transmission lines, voltage and current travelling waves are generated at the

fault point and start propagating towards line terminals. Until such waves have arrived at line terminals,

the fault has no impact as it has not been ‘seen’ by the converters or any other protection and control

equipment. Most significantly, any device installed at line terminals, usually takes a few ms (after the first

wave has arrived) to initiate any action. Such actions might result in fault current interruption [33, 34] or

continuous operation [35, 36] with reduced voltage and/or current. However, until such actions take effect
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on the system, voltages and currents are not affected (i.e. the system operates under its natural response)

and hence there are available recorded data. The time range of such data, accounts for a few to several ms

(i.e. in the range of 2 ms to 20 ms). It should be also highlighted that any protection and control equipment

is expected to affect the magnitude of voltage and current. However, the arrival time of travelling waves

(which is utilised in the proposed method) cannot be affected, as it is predominantly determined by the line

characteristics and distance to fault. Taking into account all the above-mentioned facets, and also the fact

that the proposed method requires only the first current travelling wave for fault distance calculation, the

accuracy of proposed should not be affected at by any protection and control equipment.

4.10. Effect of Synchronisation Errors

Time precision of synchronised measurements are one of the key players to the accuracy of two-ended

fault location techniques. Any time deviation could lead to large fault location errors, and hence reduce the

accuracy of fault distance estimation [37]. In this part of the paper, times synchronisation errors and their

impact on the fault location accuracy are investigated.

It should be emphasized here that the optical sensing arrangement utilised in the proposed scheme, scans

all the distributed sensors from a single point, where one common trigger device is used. Consequently,

time-synchronisation of measurements is enabled and ensured without the need of external clock (e.g.

GPS) and communication links. In the proposed current sensing scheme, two major cases could lead to

time synchronisation errors. The first one is related to the malfunction of sensors interrogator clock at the

acquisition point. The latter one could arise from any disturbance at the sensor’s and interrogator’s point or

due to any jitter within the optical fibre.
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Figure 9: Impact of synchronisation error ∆terror to fault location accuracy.
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In order to assess the impact of synchronisation error to the accuracy of the proposed fault location

scheme, the studies presented in Section 4.4 have been repeated, integrating artificial synchronisation error

∆terror. The studies have been carried out separately for each type of fault and considered synchronisation

errors of up to 2000 µs (corresponding to deviation of 10 samples at 5 kHz). The resulting accuracy of the

proposed scheme is presented in terms of average error in Figure 9. The outcome of such thorough study

revealed that the proposed scheme can maintain the fault location error below 1 %, for synchronisation

errors rising up to 1250 µs. According to relevant technical literature [37, 38, 39], and considering low

sampling rates in conjunction with the relatively large synchronisation errors, the results can be appraised

quite efficient. As also discussed in Section 3.3, the utilisation of pattern recognition can lead to the re-

duction of fault location errors arising from low sampling rates, and apparently can retain the fault location

errors within low limits, in the case of prolonged delays.

On the contrary, when greater values of synchronisation errors (i.e. ∆t ∈ [1250, 2000] µs) were con-

sidered, the average error has been increased of up to 4 %, and hence the accuracy has been diminished.

It should be also highlighted that regardless the achieved accuracy, the faulted segment identification stage

has operated correctly at 100 % of the cases.
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5. Optical Sensing Technology

This section presents a set of experimental tests which verify the practical feasibility of DC current mea-

surements. A similar experimental arrangement has been previously developed by the authors and has been

used in [11] to enable distributed DC current measurements for high speed differential protection in HVDC

networks. In recognition of space restrictions the theoretical analysis of the optically-based DC current

measurements is not presented thoroughly. For an in-depth analysis and further technical specifications, the

literature in [11, 40, 41] may be consulted.

5.1. Hybrid FBG-based voltage and current sensors

For the purposes of validating the feasibility of the distributed DC current sensing scheme, four FBGs

inscribed in polyimide coated fibers, having a bandwidth of 0.3 nm, peak wavelengths at 1539.60, 1551.56,

1554.72 and 1557.38 nm (see Figure 10) and a length of 7 mm, have been utilised.

Figure 10: FBGs spectra.

For the construction of a hybrid low voltage sensor, a 9 mm voltage stack has been used (P-883.11

PICMA[42]) and is shown in Figure 11. The relative elongation ∆l/l induced by an external electric field

is given by equation 15.

ǫ = d33E = d33
V

l
(15)

where, d33 is the longitudinal piezoelectric charge constant; E is the electric field; V is the voltage applied

across the piezoelectric material; and l is the length of the material [43].

Consequently, an applied voltage across the stack will generate a mechanical strain which is exerted on

the FBG. This will result in a corresponding shift in its peak wavelength; and thus, the peak wavelength

shift can be calibrated in terms of voltage [43].
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Figure 11: Hybrid FBG-based voltage sensor.

Ideally, by replacing a piezoelectric component with a magnetostrictive transducer, a sensor capable of

measuring DC current can be constructed [44].

5.2. Experimental Setup

The diagram of the experimental setup used for the validation of the proposed scheme and the actual

arrangements are depicted in Figures 12 and 13 respectively. In this setup, four sensors have been utilised

assuming they are spaced equally across a 300 km HVDC transmission line (Line 3 in the MTDC network

shown in Figure 7).

Figure 12: Schematic of experimental setup. Fault occurrence is shown between sensors S2 and S3 at 150 km.

Pre-simulated DC fault currents at four sensing locations along the transmission line were used to gen-

erate replica voltage waveforms (produced from a multi-function data acquisition card). Such scaled-down

voltage traces (which correspond to the scaled DC line currents) were physically input to the optical sen-

sors and an optical interrogator has been used for data sampling, and then, the data were stored on a PC for

post-analysis by the fault location algorithm.

Due to hardware limitations and to further simplify the experimental circuitry, four FBG optical voltage

sensors were used directly.
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Figure 13: Laboratory experimental setup.

The FBGs were connected (optically) to an interrogator offering a scanning frequency of 2.5 kHz (spec-

tral range: 1528-1568 nm). To futher increase the scanning frequency, maximum wavelength range of

the device was narrowed to 1538-1558 nm. Therefore, the optical signals reflected from the sensors were

acquired at a frequency of 5 kHz. Prior to low-voltage test, sensors were characterized and calibrated.

5.3. Experimental Results

The measured response of the optical sensors to a fault at 300 km line occurring at 50 km (see Figure

12) is shown in Figure 14.
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(d) Sensor S4

Figure 14: Voltage traces representing DC line currents at four sensing locations as per Figure 12.
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The recorded DC voltages are scaled-down replicas of the DC line currents which were pre-simulated

and physically generated in real-time using a data acquisition card.

These voltage traces were physically input to the FBG optical sensors. The sampled data obtained from

the optical interrogation system was stored on a PC for processing as illustrated in Figure 15. The depicted

traces represent the reflected Bragg Wavelength ∆λB, individually for each sensor. Due to mechanical

inertia of the sensors and other environmental conditions, (e.g. temperature) the raw measured response

(black solid line) of the sensor contains a significant level of noise.
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Figure 15: Sensors response to DC voltage traces depicted in Figure 14.

For this reason, the measurements have been filtered by using Discrete Wavele multi-resolution analysis

(see Appendix II for further explanation). In particular, the measurements have been decomposed and

reconstructed using a six-level tree analysis and fixed threshold denoising. The denoised signals are also

illustrated alongside the raw measurements in Figure 15. It is evident that the denoised signals contain less

noise and can be used with much more confidence for fault location applications.

The inverted function was used again to normalise the DC voltage in terms of shifted Bragg Wavelength

∆λB. The resulting waveforms of wavelength-to-voltage conversion are individually illustrated in Figure
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16 for each sensor. It is evident that these traces are of great resemblance with the originally-simulated (see

Figure 14).
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Figure 16: Normalised DC voltages corresponding to shifted Bragg Wavelengths ∆λB .

The normalised DC voltages (corresponding to DC currents) can form an input on a platform for post-

processing. Consequently, a fault location algorithm (or any other algorithm or function) can be realised.

5.4. Technical and Economical Merits

Distributed sensing in power systems is an advanced, cutting-edge technology (with numerous oper-

ational, technical and economic benefits) which aims to accelerate power system protection and control

applications [11, 41, 45, 46, 47, 48]. The key technical and economical merits of the utilised distributed

sensing technology (compared to conventional electrical and other optical methods), arise from the fact that

the sensors are completely passive and require no power. Moreover, there is no need of other signal pro-

cessing and communication equipment (i.e. GPS, micro-controllers, etc.) at the location of the sensors (i.e.

sensors are interrogated from a single acquisition point, where measurements are also time-stamped). These

technical merits will enable reduction in the hardware and infrastructure needs (i.e. communications, low

voltage power supplies, decoders/encoders, etc.) required for wide-area monitoring. It should be also noted
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that over the past decade the cost of FBG sensors has been reduced substantially, leading to the realization

of high performance and cheap transducers.

Overall, due to the extensibility and centralised nature of the sensing technology, the capability of

distributed sensing can be technically beneficial, while can ultimately result in reduction of capital and

operational costs.

6. Conclusions

In this paper a new fault location scheme for MTDC grids has been proposed which utilises the principle

of distributed optical sensing, travelling waves and a machine learning approach. It has been found that the

proposed scheme can accurately classify the fault type including pole-to-pole, positive pole-to-ground and

negative pole-to-ground faults. It has also been demonstrated that the fault location can be calculated with

increased accuracy. Specifically, it has been found that the minimum, maximum and average error for

PPFs was 0.0000 %, 0.1997 % and 0.0797 %, respectively; for PFGs those errors correspond to 0.0100 %,

0.2310 % and 0.0987 %; and for NGF to 0.0012 %, 0.8860 % and 0.1357 %, respectively. The scheme

has also demonstrated to be accurate even with highly resistive faults with values of up to 500 Ω. A

sensitivity analysis on different mother wavelets Ψ and scaling factors α revealed that for the proposed fault

location algorithm, Haar, db1 and db2 mother wavelets with a scaling factor of (or around) α = 10 are the

best compromises between minimum, maximum and average error. The proposed scheme has been also

found to be robust against different loading conditions of transmission lines and excessive noise contained

in current measurements. The effect of time-synchornisation errors has been also investigated, and the

scheme has been found to maintain accuracy below 1 % for time delays rising up tp 1250 µs. A series

of experimental test sets demonstrated that the distributed optical current sensing scheme is practically

feasible. Consequently there is confidence with regards the practical implementation of the scheme. The

merits of wavelet transform have been demonstrated which include wave detection and signal denoising. A

few considerations including the impact of HVDC control systems, the technical and economic merits of

distributing sensing have been also discussed.

Appendix I - Wavelet Transform

The wavelet transform of a function v(t) can be expressed as the integral of the product of v(t) and the

daughter wavelet Ψ∗

a,b(t) as presented in equation 16.
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WTψ(α,b)v(t) =

∫ +∞

−∞

v(t)
1√
α
Ψ

(
t− b

a

)

︸ ︷︷ ︸

daughter wavelet Ψ∗

a,b
(t)

dt (16)

The daughter wavelet Ψ∗

a,b(t) is a scaled and shifted version of the mother wavelet Ψa,b(t). Scaling is

implemented by α, which is the binary dilation (also known as scaling factor) and shifted by b, which is

the binary position (also known as shifting or translation). If the function v(t) and mother wavelet Ψa,b(t)

are real functions, then the resulting WTψ(α,b)v(t) is also a real function. In any other case mother wavelet

Ψa,b(t) and the resulting WTψ(α,b)v(t) are complex functions.

Wavelet transform can be distinguished in two categories, namely Continuous Wavelet Transform (CWT)

and Discrete Wavelet Transform (DWT). The difference lies upon the resolution of binary dilation α and

binary position b. In DWT, they move discretely in dyadic blocks. Specifically, α and b, can only take

values of the power of two as expressed in equation (17).

αj = 2j, (α0 = 20 = 1, α1 = 21 = 2, ...)

bj = 2jN, (b0 = 2j0 = 0, b1 = 2j1 = 2j, ...)






(17)

where, j is the level of decomposition and N is the sample index.

Consequently, the CWT described in equation 16 results in the following discrete form:

WTψ(2j ,b)v(t) =

∫ +∞

−∞

v(t)
1√
2j
Ψ

(
t− 2jN

2j

)

dt (18)

The selection between CWT and DWT is a trade-off between time accuracy of the wave detection, and

processing resources and their associated time delays [49]. In the case of CWT, the daughter wavelet can be

positioned smoothly over the signal, and hence, the accuracy of the wave time detection is better than DWT

techniques. This is the reason that CWT is preferred for fault location applications [14], where the com-

putational time is not crucial. However, DWT is computationally more efficient [49], which enables faster

wave detection. As a result, DWT is considered more suitable for power system protection applications

[50].

Appendix II - Wavelet Multi-resolution Analysis

When DWT is applied to a discrete signal v(n), the signal can be decomposed into high-frequency

detailed and low-frequency approximation coefficients as shown in equations 19 and 20 respectively.
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W2jv(n) =
∑

k

gkA2j−1v(n− 2j−1k) (19)

A2jv(n) =
∑

k

hkA2j−1v(n− 2j−1k) (20)

where, gk is the high-pass filter coefficients; hk is the low-pass filter coefficients; and A20 is the initial

signal.

Figure 17: Decomposition structure for multi-resolution analysis based on filter banks.

Taking into account that signal v(n) has a sampling frequency Fs, it contains components in the fre-

quency spectrum 0 ∼ Fs/2 as per Nyquist Theorem. As shown in Figure 17, DWT decomposes the signal

into different frequency bands, and therefore, ‘multiresolution’ analysis is achieved [51]. The frequency

bandwidth of high-frequency detailed and low-frequency approximation coefficients for each decomposi-

tion level are shown in equations 21 and 22, respectively.

fband−high =
Fs

2 · 2j ∼ Fs
2 · 2j−1

(21)

fband−low = 0 ∼ Fs
2 · 2j (22)

It is therefore evident that according to the frequency band of interest, the corresponding scaling factor

may be selected.

The multi-resolution decomposition analysis depicted in Figure 17 can be implemented in a bi-directional

manner. This means that a signal can be decomposed to a desired number of levels and then re-constructed

using only the coefficients of interest. Consequently, the two-way wavelet-based multi-resolution analysis

can be used for the purpose of selective filtering.
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