327 research outputs found

    Electrochemical Oxidation Assessment and Interaction of 2-aminoethanol and N, N-diethylethanamine Propagation in Acidic Medium

    Get PDF
    Electro�oxidation and inhibitor performance of copper specimens in 1 M hydrochloric acid solu� tion was investigated at room temperature by linear potentiodynamic polarization and gravimetric method in the presence of 2�aminoethanol (A) and N, N�diethylethanamine (D) as an inorganic inhibitor. The effect of the inhibitory concentration on the corrosion behavior of copper was studied over 288 hrs at 298°K. The inhibitory efficiency rise up to 96% for single induced and 98% for synergistic behavior. The adsorption mechanism characteristic was supported by SEM/EDX analysis and adsorption isotherm. From all indica� tion, the inhibitive efficiency of these compounds majorly depends on their molecular structure and concen� tration. The blocking effects of the surface interface were also explained on the basis of the inhibitor active action. 2�aminoethanol and N, N�diethylethanamine inhibits copper in 1 M HCl by strictly affecting both the anodic and cathodic sites. Portion of the surface covered calculated was also found to follow Langmuir adsorption isotherm

    Detection of placental-type alkaline phosphatase in ovarian cancer.

    Get PDF
    A monoclonal antibody, H317, has been used for the sensitive and specific detection of placental-type alkaline phosphatase (PLAP) in sera, solubilized tissue extracts and fixed tumour tissue sections from patients representing a variety of ovarian tumours. PLAP was detected in over 30% of these sera and in most solubilized tumour tissue extracts. There was no association between circulating PLAP levels and either tissue extract levels or immunohistological staining of ovarian tumour tissue sections with H317. Nevertheless, immunohistology demonstrated the heterogeneity of cellular localization of PLAP within different tumours, and can often be of value in localizing tumour tissue

    Full-term extrauterine abdominal pregnancy: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Extrauterine abdominal pregnancy is extremely rare and is frequently missed during antenatal care. This is a report of a full-term extrauterine abdominal pregnancy in a primigravida who likely had a ruptured ectopic pregnancy with secondary implantation and subsequently delivered a healthy baby.</p> <p>Case presentation</p> <p>A 23-year-old, Middle Eastern, primigravida presented at 14 weeks gestation with intermittent suprapubic pain and dysuria. An abdominal ultrasound examination showed a single viable fetus with free fluid in her abdomen. A follow-up examination at term showed a breech presentation and the possibility of a bicornute uterus with the fetus present in the left horn of her uterus. Our patient underwent Cesarean delivery under general anesthesia and was found to have a small intact uterus with the fetus lying in her abdomen and surrounded by an amniotic fluid-filled sac. The baby was extracted uneventfully, but the placenta was implanted in the left broad ligament and its removal resulted in massive intraoperative bleeding that necessitated blood and blood products transfusion and the administration of Factor VII to control the bleeding. Both the mother and newborn were discharged home in good condition.</p> <p>Conclusions</p> <p>An extrauterine abdominal pregnancy secondary to a ruptured ectopic pregnancy with secondary implantation could be missed during antenatal care and continue to term with good maternal and fetal outcome. An advanced extrauterine pregnancy should not result in the automatic termination of the pregnancy.</p

    The psychological and social impact of the digital self-support system ‘Brain in Hand’ on autistic people: prospective cohort study in England and Wales

    Get PDF
    Background Brain in Hand (BIH) is a UK-based digital self-support system for managing anxiety and social functioning. Aims To identify the impact of BIH on the psychological and social functioning of adults with autism. Method Adults with diagnosed or suspected DSM-5 (level 1) autism, identified by seven NHS autism services in England and Wales, were recruited for a 12-week prospective mixed-methods cohort study. The primary quantitative outcome measures were the Health of the Nation Outcome Scales for People with Learning Disabilities (HONOS-LD) and the Hospital Anxiety and Depression Scale (HADS). Fisher's exact test explored sociodemographic associations. Paired t-test was utilised for pre–post analysis of overall effectiveness of BIH. Multivariable linear regression models, univariable pre–post analysis, Wilcoxon signed-rank test, logistic regression analysis, Bonferroni correction and normative analysis were used to give confidence in changes identified. A thematic analysis of semi-structured exist interviews following Braun and Clarke's six-step process of 10% of participants who completed the study was undertaken. Results Sixty-six of 99 participants completed the study. There was significant reduction in mean HONOS-LD scores, with 0.65 s.d. decrease in those who used BIH for 12 weeks. Significant positive changes were identified in HONOS-LD subdomains of ‘self-injurious behaviours’, ‘memory and orientation’, ‘communication problems in understanding’, ‘occupation and activities’ and ‘problems with relationship’. A significant reduction in the anxiety, but not depression, component of the HADS scores was identified. Thematic analysis showed high confidence in BIH. Conclusions BIH improved anxiety and other clinical, social and functioning outcomes of adults with autism. </jats:sec

    Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Regular, detailed reporting on population health by underlying cause of death is fundamental for public health decision making. Cause-specific estimates of mortality and the subsequent effects on life expectancy worldwide are valuable metrics to gauge progress in reducing mortality rates. These estimates are particularly important following large-scale mortality spikes, such as the COVID-19 pandemic. When systematically analysed, mortality rates and life expectancy allow comparisons of the consequences of causes of death globally and over time, providing a nuanced understanding of the effect of these causes on global populations. Methods: The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 cause-of-death analysis estimated mortality and years of life lost (YLLs) from 288 causes of death by age-sex-location-year in 204 countries and territories and 811 subnational locations for each year from 1990 until 2021. The analysis used 56 604 data sources, including data from vital registration and verbal autopsy as well as surveys, censuses, surveillance systems, and cancer registries, among others. As with previous GBD rounds, cause-specific death rates for most causes were estimated using the Cause of Death Ensemble model—a modelling tool developed for GBD to assess the out-of-sample predictive validity of different statistical models and covariate permutations and combine those results to produce cause-specific mortality estimates—with alternative strategies adapted to model causes with insufficient data, substantial changes in reporting over the study period, or unusual epidemiology. YLLs were computed as the product of the number of deaths for each cause-age-sex-location-year and the standard life expectancy at each age. As part of the modelling process, uncertainty intervals (UIs) were generated using the 2·5th and 97·5th percentiles from a 1000-draw distribution for each metric. We decomposed life expectancy by cause of death, location, and year to show cause-specific effects on life expectancy from 1990 to 2021. We also used the coefficient of variation and the fraction of population affected by 90% of deaths to highlight concentrations of mortality. Findings are reported in counts and age-standardised rates. Methodological improvements for cause-of-death estimates in GBD 2021 include the expansion of under-5-years age group to include four new age groups, enhanced methods to account for stochastic variation of sparse data, and the inclusion of COVID-19 and other pandemic-related mortality—which includes excess mortality associated with the pandemic, excluding COVID-19, lower respiratory infections, measles, malaria, and pertussis. For this analysis, 199 new country-years of vital registration cause-of-death data, 5 country-years of surveillance data, 21 country-years of verbal autopsy data, and 94 country-years of other data types were added to those used in previous GBD rounds. Findings: The leading causes of age-standardised deaths globally were the same in 2019 as they were in 1990; in descending order, these were, ischaemic heart disease, stroke, chronic obstructive pulmonary disease, and lower respiratory infections. In 2021, however, COVID-19 replaced stroke as the second-leading age-standardised cause of death, with 94·0 deaths (95% UI 89·2–100·0) per 100 000 population. The COVID-19 pandemic shifted the rankings of the leading five causes, lowering stroke to the third-leading and chronic obstructive pulmonary disease to the fourth-leading position. In 2021, the highest age-standardised death rates from COVID-19 occurred in sub-Saharan Africa (271·0 deaths [250·1–290·7] per 100 000 population) and Latin America and the Caribbean (195·4 deaths [182·1–211·4] per 100 000 population). The lowest age-standardised death rates from COVID-19 were in the high-income super-region (48·1 deaths [47·4–48·8] per 100 000 population) and southeast Asia, east Asia, and Oceania (23·2 deaths [16·3–37·2] per 100 000 population). Globally, life expectancy steadily improved between 1990 and 2019 for 18 of the 22 investigated causes. Decomposition of global and regional life expectancy showed the positive effect that reductions in deaths from enteric infections, lower respiratory infections, stroke, and neonatal deaths, among others have contributed to improved survival over the study period. However, a net reduction of 1·6 years occurred in global life expectancy between 2019 and 2021, primarily due to increased death rates from COVID-19 and other pandemic-related mortality. Life expectancy was highly variable between super-regions over the study period, with southeast Asia, east Asia, and Oceania gaining 8·3 years (6·7–9·9) overall, while having the smallest reduction in life expectancy due to COVID-19 (0·4 years). The largest reduction in life expectancy due to COVID-19 occurred in Latin America and the Caribbean (3·6 years). Additionally, 53 of the 288 causes of death were highly concentrated in locations with less than 50% of the global population as of 2021, and these causes of death became progressively more concentrated since 1990, when only 44 causes showed this pattern. The concentration phenomenon is discussed heuristically with respect to enteric and lower respiratory infections, malaria, HIV/AIDS, neonatal disorders, tuberculosis, and measles. Interpretation: Long-standing gains in life expectancy and reductions in many of the leading causes of death have been disrupted by the COVID-19 pandemic, the adverse effects of which were spread unevenly among populations. Despite the pandemic, there has been continued progress in combatting several notable causes of death, leading to improved global life expectancy over the study period. Each of the seven GBD super-regions showed an overall improvement from 1990 and 2021, obscuring the negative effect in the years of the pandemic. Additionally, our findings regarding regional variation in causes of death driving increases in life expectancy hold clear policy utility. Analyses of shifting mortality trends reveal that several causes, once widespread globally, are now increasingly concentrated geographically. These changes in mortality concentration, alongside further investigation of changing risks, interventions, and relevant policy, present an important opportunity to deepen our understanding of mortality-reduction strategies. Examining patterns in mortality concentration might reveal areas where successful public health interventions have been implemented. Translating these successes to locations where certain causes of death remain entrenched can inform policies that work to improve life expectancy for people everywhere. Funding: Bill &amp; Melinda Gates Foundation

    Global, regional, and national burden of epilepsy, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Epilepsy is one of the most common serious neurological disorders and affects individuals of all ages across the globe. The aim of this study is to provide estimates of the epilepsy burden on the global, regional, and national levels for 1990–2021. Methods: Using well established Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) methodology, we quantified the prevalence of active idiopathic (epilepsy of genetic or unknown origin) and secondary epilepsy (epilepsy due to an underlying abnormality of the brain structure or chemistry), as well as incidence, death, and disability-adjusted life-years (DALYs) by age, sex, and location (globally, 21 GBD regions and seven super-regions, World Bank country income levels, Socio-demographic Index [SDI], and 204 countries) and their trends from 1990 to 2021. Vital registrations and verbal autopsies provided information about deaths, and data on the prevalence and severity of epilepsy, largely came from population representative surveys. All estimates were calculated with 95% uncertainty intervals (UIs). Findings: In 2021, there were 51·7 million (95% UI 44·9–58·9) people with epilepsy (idiopathic and secondary combined) globally, with an age-standardised prevalence of 658 per 100 000 (569–748). Idiopathic epilepsy had an age-standardised prevalence of 307 per 100 000 (235–389) globally, with 24·2 million (18·5–30·7) prevalent cases, and secondary epilepsy had a global age-standardised prevalence of 350 per 100 000 (322–380). In 2021, 0·7% of the population had active epilepsy (0·3% attributed to idiopathic epilepsy and 0·4% to secondary epilepsy), and the age-standardised global prevalence of epilepsy from idiopathic and secondary epilepsy combined increased from 1990 to 2021 by 10·8% (1·1–21·3), mainly due to corresponding changes in secondary epilepsy. However, age-standardised death and DALY rates of idiopathic epilepsy reduced from 1990 to 2021 (decline of 15·8% [8·8–22·8] and 14·5% [4·2–24·2], respectively). There were three-fold to four-fold geographical differences in the burden of active idiopathic epilepsy, with the bulk of the burden residing in low-income to middle-income countries: 82·1% (81·1–83·4) of incident, 80·4% prevalent (79·7–82·7), 84·7% (83·7–85·1) fatal epilepsy, and 87·9% (86·2–89·2) epilepsy DALYs. Interpretation: Although the global trends in idiopathic epilepsy deaths and DALY rates have improved in the preceding decades, in 2021 there were almost 52 million people with active epilepsy (24 million from idiopathic epilepsy and 28 million from secondary epilepsy), with the bulk of the burden (&gt;80%) residing in low-income to middle-income countries. Better treatment and prevention of epilepsy are required, along with further research on risk factors of idiopathic epilepsy, good-quality long-term epilepsy surveillance studies, and exploration of the possible effect of stigma and cultural differences in seeking medical attention for epilepsy. Funding: Bill and Melinda Gates Foundatio

    Burden of disease scenarios for 204 countries and territories, 2022–2050: a forecasting analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Future trends in disease burden and drivers of health are of great interest to policy makers and the public at large. This information can be used for policy and long-term health investment, planning, and prioritisation. We have expanded and improved upon previous forecasts produced as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) and provide a reference forecast (the most likely future), and alternative scenarios assessing disease burden trajectories if selected sets of risk factors were eliminated from current levels by 2050. Methods: Using forecasts of major drivers of health such as the Socio-demographic Index (SDI; a composite measure of lag-distributed income per capita, mean years of education, and total fertility under 25 years of age) and the full set of risk factor exposures captured by GBD, we provide cause-specific forecasts of mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) by age and sex from 2022 to 2050 for 204 countries and territories, 21 GBD regions, seven super-regions, and the world. All analyses were done at the cause-specific level so that only risk factors deemed causal by the GBD comparative risk assessment influenced future trajectories of mortality for each disease. Cause-specific mortality was modelled using mixed-effects models with SDI and time as the main covariates, and the combined impact of causal risk factors as an offset in the model. At the all-cause mortality level, we captured unexplained variation by modelling residuals with an autoregressive integrated moving average model with drift attenuation. These all-cause forecasts constrained the cause-specific forecasts at successively deeper levels of the GBD cause hierarchy using cascading mortality models, thus ensuring a robust estimate of cause-specific mortality. For non-fatal measures (eg, low back pain), incidence and prevalence were forecasted from mixed-effects models with SDI as the main covariate, and YLDs were computed from the resulting prevalence forecasts and average disability weights from GBD. Alternative future scenarios were constructed by replacing appropriate reference trajectories for risk factors with hypothetical trajectories of gradual elimination of risk factor exposure from current levels to 2050. The scenarios were constructed from various sets of risk factors: environmental risks (Safer Environment scenario), risks associated with communicable, maternal, neonatal, and nutritional diseases (CMNNs; Improved Childhood Nutrition and Vaccination scenario), risks associated with major non-communicable diseases (NCDs; Improved Behavioural and Metabolic Risks scenario), and the combined effects of these three scenarios. Using the Shared Socioeconomic Pathways climate scenarios SSP2-4.5 as reference and SSP1-1.9 as an optimistic alternative in the Safer Environment scenario, we accounted for climate change impact on health by using the most recent Intergovernmental Panel on Climate Change temperature forecasts and published trajectories of ambient air pollution for the same two scenarios. Life expectancy and healthy life expectancy were computed using standard methods. The forecasting framework includes computing the age-sex-specific future population for each location and separately for each scenario. 95% uncertainty intervals (UIs) for each individual future estimate were derived from the 2·5th and 97·5th percentiles of distributions generated from propagating 500 draws through the multistage computational pipeline. Findings: In the reference scenario forecast, global and super-regional life expectancy increased from 2022 to 2050, but improvement was at a slower pace than in the three decades preceding the COVID-19 pandemic (beginning in 2020). Gains in future life expectancy were forecasted to be greatest in super-regions with comparatively low life expectancies (such as sub-Saharan Africa) compared with super-regions with higher life expectancies (such as the high-income super-region), leading to a trend towards convergence in life expectancy across locations between now and 2050. At the super-region level, forecasted healthy life expectancy patterns were similar to those of life expectancies. Forecasts for the reference scenario found that health will improve in the coming decades, with all-cause age-standardised DALY rates decreasing in every GBD super-region. The total DALY burden measured in counts, however, will increase in every super-region, largely a function of population ageing and growth. We also forecasted that both DALY counts and age-standardised DALY rates will continue to shift from CMNNs to NCDs, with the most pronounced shifts occurring in sub-Saharan Africa (60·1% [95% UI 56·8–63·1] of DALYs were from CMNNs in 2022 compared with 35·8% [31·0–45·0] in 2050) and south Asia (31·7% [29·2–34·1] to 15·5% [13·7–17·5]). This shift is reflected in the leading global causes of DALYs, with the top four causes in 2050 being ischaemic heart disease, stroke, diabetes, and chronic obstructive pulmonary disease, compared with 2022, with ischaemic heart disease, neonatal disorders, stroke, and lower respiratory infections at the top. The global proportion of DALYs due to YLDs likewise increased from 33·8% (27·4–40·3) to 41·1% (33·9–48·1) from 2022 to 2050, demonstrating an important shift in overall disease burden towards morbidity and away from premature death. The largest shift of this kind was forecasted for sub-Saharan Africa, from 20·1% (15·6–25·3) of DALYs due to YLDs in 2022 to 35·6% (26·5–43·0) in 2050. In the assessment of alternative future scenarios, the combined effects of the scenarios (Safer Environment, Improved Childhood Nutrition and Vaccination, and Improved Behavioural and Metabolic Risks scenarios) demonstrated an important decrease in the global burden of DALYs in 2050 of 15·4% (13·5–17·5) compared with the reference scenario, with decreases across super-regions ranging from 10·4% (9·7–11·3) in the high-income super-region to 23·9% (20·7–27·3) in north Africa and the Middle East. The Safer Environment scenario had its largest decrease in sub-Saharan Africa (5·2% [3·5–6·8]), the Improved Behavioural and Metabolic Risks scenario in north Africa and the Middle East (23·2% [20·2–26·5]), and the Improved Nutrition and Vaccination scenario in sub-Saharan Africa (2·0% [–0·6 to 3·6]). Interpretation: Globally, life expectancy and age-standardised disease burden were forecasted to improve between 2022 and 2050, with the majority of the burden continuing to shift from CMNNs to NCDs. That said, continued progress on reducing the CMNN disease burden will be dependent on maintaining investment in and policy emphasis on CMNN disease prevention and treatment. Mostly due to growth and ageing of populations, the number of deaths and DALYs due to all causes combined will generally increase. By constructing alternative future scenarios wherein certain risk exposures are eliminated by 2050, we have shown that opportunities exist to substantially improve health outcomes in the future through concerted efforts to prevent exposure to well established risk factors and to expand access to key health interventions. Funding: Bill &amp; Melinda Gates Foundation
    corecore