847 research outputs found
Tight binding formulation of the dielectric response in semiconductor nanocrystals
We report on a theoretical derivation of the electronic dielectric response
of semiconductor nanocrystals using a tight-binding framework. Extending to the
nanoscale the Hanke and Sham approach [Phys. Rev. B 12, 4501 (1975)] developed
for bulk semiconductors, we show how local field effects can be included in the
study of confined systems. A great advantage of this scheme is that of being
formulated in terms of localized orbitals and thus it requires very few
computational resources and times. Applications to the optical and screening
properties of semiconductor nanocrystals are presented here and discussed.
Results concerning the absorption cross section, the static polarizability and
the screening function of InAs (direct gap) and Si (indirect gap) nanocrystals
compare well to both first principles results and experimental data. We also
show that the present scheme allows us to easily go beyond the continuum
dielectric model, based on the Clausius-Mossotti equation, which is frequently
used to include the nanocrystal surface polarization. Our calculations indicate
that the continuum dielectric model, used in conjunction with a size dependent
dielectric constant, underestimates the nanocrystal polarizability, leading to
exceedingly strong surface polarization fields.Comment: 9 pages, 5 figures; corrected typos, added reference
Role of local fields in the optical properties of silicon nanocrystals using the tight binding approach
The role of local fields in the optical response of silicon nanocrystals is
analyzed using a tight binding approach. Our calculations show that, at
variance with bulk silicon, local field effects dramatically modify the silicon
nanocrystal optical response. An explanation is given in terms of surface
electronic polarization and confirmed by the fair agreement between the tight
binding results and that of a classical dielectric model. From such a
comparison, it emerges that the classical model works not only for large but
also for very small nanocrystals. Moreover, the dependence on size of the
optical response is discussed, in particular treating the limit of large size
nanocrystals.Comment: 4 pages, 4 figure
Comorbid depressive disorders in ADHD. the role of ADHD severity, subtypes and familial psychiatric disorders
ObjectiveaaTo evaluate the presence of Major Depressive Disorder (MDD) and Dysthymic Disorder (DD) in a sample of Italian children with Attention Deficit Hyperactivity Disorder (ADHD) and to explore specific features of comorbid depressive disorders in ADHD. MethodsaaThree hundred and sixty-six consecutive, drug-naïve Caucasian Italian outpatients with ADHD were recruited and comorbid disorders were evaluated using DSM-IV-TR criteria. To evaluate ADHD severity, parents of all children filled out the ADHD Rating Scale. Thirty-seven children with comorbid MDD or DD were compared with 118 children with comorbid conduct disorder and 122 without comorbidity for age, sex, IQ level, family psychiatric history, and ADHD subtypes and severity. Resultsaa42 of the ADHD children displayed comorbid depressive disorders: 16 exhibited MDD, 21 DD, and 5 both MDD and DD. The frequency of hyperactive-impulsive subtypes was significantly lower in ADHD children with depressive disorders, than in those without any comorbidity. ADHD children with depressive disorders showed a higher number of familial psychiatric disorders and higher score in the Inattentive scale of the ADHD Rating Scale, than children without any comorbidity. No differences were found for age, sex and IQ level between the three groups. Conclusions: Consistent with previous studies in other countries, depressive disorders affect a significant proportion of ADHD children in Italy. Patient assessment and subsequent treatment should take into consideration the possible presence of this comorbidity, which could specifically increase the severity of ADHD attention problems
Engineering Silicon Nanocrystals: Theoretical study of the effect of Codoping with Boron and Phosphorus
We show that the optical and electronic properties of nanocrystalline silicon
can be efficiently tuned using impurity doping. In particular, we give
evidence, by means of ab-initio calculations, that by properly controlling the
doping with either one or two atomic species, a significant modification of
both the absorption and the emission of light can be achieved. We have
considered impurities, either boron or phosphorous (doping) or both (codoping),
located at different substitutional sites of silicon nanocrystals with size
ranging from 1.1 nm to 1.8 nm in diameter. We have found that the codoped
nanocrystals have the lowest impurity formation energies when the two
impurities occupy nearest neighbor sites near the surface. In addition, such
systems present band-edge states localized on the impurities giving rise to a
red-shift of the absorption thresholds with respect to that of undoped
nanocrystals. Our detailed theoretical analysis shows that the creation of an
electron-hole pair due to light absorption determines a geometry distortion
that in turn results in a Stokes shift between adsorption and emission spectra.
In order to give a deeper insight in this effect, in one case we have
calculated the absorption and emission spectra going beyond the single-particle
approach showing the important role played by many-body effects. The entire set
of results we have collected in this work give a strong indication that with
the doping it is possible to tune the optical properties of silicon
nanocrystals.Comment: 14 pages 19 figure
Short-Haul Revitalization Study Final Report
A feasibility study was performed for an advanced commercial short-haul aircraft to evaluate the potential for increased service for short-haul flights that operate out of regional and community airports. An analysis of potential origin-destination markets and trip distances resulted in a seat capacity selection of 48 passengers and a design range of 600 NM. A down-select of advanced technologies resulted in a hybrid-electric propulsion system being chosen as the primary enabling technology. A conceptual design of the advanced aircraft was developed, and a mission and sizing analysis was performed, comparing variants of the advanced aircraft with different levels of electrification. Fairly aggressive levels of electrification and battery specific energy are needed for the hybridelectric architecture to realize any benefit in terms of total energy cost for the 600 NM design mission. The development and operational costs were estimated for the advanced aircraft and compared to the baseline. This analysis demonstrated the negative effect of the cost to develop the hybrid-electric technology on the eventual operating cost. A market analysis was performed to determine possible passenger demand for the advanced shorthaul aircraft. According to the market analysis, there is potential demand for such an aircraft, but not necessarily in many of the smaller regional and community airports that were the intended beneficiaries of this new aircraft concept
Adiabatic description of nonspherical quantum dot models
Within the effective mass approximation an adiabatic description of
spheroidal and dumbbell quantum dot models in the regime of strong dimensional
quantization is presented using the expansion of the wave function in
appropriate sets of single-parameter basis functions. The comparison is given
and the peculiarities are considered for spectral and optical characteristics
of the models with axially symmetric confining potentials depending on their
geometric size making use of the total sets of exact and adiabatic quantum
numbers in appropriate analytic approximations
Increased variability in ApcMin/+ intestinal tissue can be measured with microultrasound
Altered tissue structure is a feature of many disease states and is usually measured by microscopic methods, limiting analysis to small areas. Means to rapidly and quantitatively measure the structure and organisation of large tissue areas would represent a major advance not just for research but also in the clinic. Here, changes in tissue organisation that result from heterozygosity in Apc, a precancerous situation, are comprehensively measured using microultrasound and three-dimensional high-resolution microscopy. Despite its normal appearance in conventionally examined cross-sections, both approaches revealed a significant increase in the variability of tissue organisation in Apc heterozygous tissue. These changes preceded the formation of aberrant crypt foci or adenoma. Measuring these premalignant changes using microultrasound provides a potential means to detect microscopically abnormal regions in large tissue samples, independent of visual examination or biopsies. Not only does this provide a powerful tool for studying tissue structure in experimental settings, the ability to detect and monitor tissue changes by microultrasound could be developed into a powerful adjunct to screening endoscopy in the clinic
Il COSIM per la riqualificazione e l’ampliamento delle pertinenze del Teatro alla Scala di Milano
Nell’ambito del progetto PRIN 2010-2011, la ricerca dipartimentale ha affrontato, tra gli altri, il tema della ‘federazione’ del Construction Site Information Modeling (CoSIM) con il BHIMM, al fine di indagare i vantaggi e i limiti di aggregazione dell’apparato informativo nello stadio di progettazione e di produzione del processo edilizio, con particolare attenzione, in questo caso, agli interventi sul patrimonio architettonico esistente. Tra i diversi casi di studio ai quali si è applicata la modellazione informativa ergotecnica, quello del rifacimento delle pertinenze del Teatro alla Scala Milano, ha permesso di indagare gli aspetti del CoSIM relativi alla virtualizzazione 3D del layout di cantiere e all’analisi 4D del processo in presenza di vincoli di contesto di forte impatto sulla sua programmazione operativa. Come risultato si è ottenuto un affinamento del template di contestualizzazione del CoSIM, l’ampliamento di una libreria di modelli di elementi cantieristici parametrizzati e la creazione di un data base di macchine e attrezzature da cantiere tale da consentire un approccio dinamico, per LOD successivi, alla modellazione ergotecnica nello stadio di progettazione e di esecuzione, così da favorire anche la gestione in corso d’opera di un intervento, nell’ottica di prevenire criticità operative poi difficilmente dominabili dal punto di vista dei costi e dei tempi di realizzazione
Screening in semiconductor nanocrystals: \textit{Ab initio} results and Thomas-Fermi theory
A first-principles calculation of the impurity screening in Si and Ge
nanocrystals is presented. We show that isocoric screening gives results in
agreement with both the linear response and the point-charge approximations.
Based on the present ab initio results, and by comparison with previous
calculations, we propose a physical real-space interpretation of the several
contributions to the screening. Combining the Thomas-Fermi theory and simple
electrostatics, we show that it is possible to construct a model screening
function that has the merit of being of simple physical interpretation. The
main point upon which the model is based is that, up to distances of the order
of a bond length from the perturbation, the charge response does not depend on
the nanocrystal size. We show in a very clear way that the link between the
screening at the nanoscale and in the bulk is given by the surface
polarization. A detailed discussion is devoted to the importance of local field
effects in the screening. Our first-principles calculations and the
Thomas-Fermi theory clearly show that in Si and Ge nanocrystals, local field
effects are dominated by surface polarization, which causes a reduction of the
screening in going from the bulk down to the nanoscale. Finally, the model
screening function is compared with recent state-of-the-art ab initio
calculations and tested with impurity activation energies
Silicon nanofluidic membrane for electrostatic control of drugs and analytes elution
Individualized long-term management of chronic pathologies remains an elusive goal despite recent progress in drug formulation and implantable devices. The lack of advanced systems for therapeutic administration that can be controlled and tailored based on patient needs precludes optimal management of pathologies, such as diabetes, hypertension, rheumatoid arthritis. Several triggered systems for drug delivery have been demonstrated. However, they mostly rely on continuous external stimuli, which hinder their application for long-term treatments. In this work, we investigated a silicon nanofluidic technology that incorporates a gate electrode and examined its ability to achieve reproducible control of drug release. Silicon carbide (SiC) was used to coat the membrane surface, including nanochannels, ensuring biocompatibility and chemical inertness for long-term stability for in vivo deployment. With the application of a small voltage (≤ 3 V DC) to the buried polysilicon electrode, we showed in vitro repeatable modulation of membrane permeability of two model analytes—methotrexate and quantum dots. Methotrexate is a first-line therapeutic approach for rheumatoid arthritis; quantum dots represent multi-functional nanoparticles with broad applicability from bio-labeling to targeted drug delivery. Importantly, SiC coating demonstrated optimal properties as a gate dielectric, which rendered our membrane relevant for multiple applications beyond drug delivery, such as lab on a chip and micro total analysis systems (µTAS)
- …
